1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
from typing import Tuple
import torch
from parameterized import parameterized
from torch import Tensor
from torchaudio.models import Tacotron2
from torchaudio.models.tacotron2 import _Decoder, _Encoder
from torchaudio_unittest.common_utils import skipIfPy310, TestBaseMixin, torch_script
class Tacotron2InferenceWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, text: Tensor, text_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
return self.model.infer(text, text_lengths)
class Tacotron2DecoderInferenceWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, memory: Tensor, memory_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
return self.model.infer(memory, memory_lengths)
class TorchscriptConsistencyMixin(TestBaseMixin):
r"""Mixin to provide easy access assert torchscript consistency"""
def _assert_torchscript_consistency(self, model, tensors):
ts_func = torch_script(model)
torch.random.manual_seed(40)
output = model(*tensors)
torch.random.manual_seed(40)
ts_output = ts_func(*tensors)
self.assertEqual(ts_output, output)
class Tacotron2EncoderTests(TorchscriptConsistencyMixin):
@skipIfPy310
def test_tacotron2_torchscript_consistency(self):
r"""Validate the torchscript consistency of a Encoder."""
n_batch, n_seq, encoder_embedding_dim = 16, 64, 512
model = (
_Encoder(encoder_embedding_dim=encoder_embedding_dim, encoder_n_convolution=3, encoder_kernel_size=5)
.to(self.device)
.eval()
)
x = torch.rand(n_batch, encoder_embedding_dim, n_seq, device=self.device, dtype=self.dtype)
input_lengths = torch.ones(n_batch, device=self.device, dtype=torch.int32) * n_seq
self._assert_torchscript_consistency(model, (x, input_lengths))
def test_encoder_output_shape(self):
r"""Feed tensors with specific shape to Tacotron2 Decoder and validate
that it outputs with a tensor with expected shape.
"""
n_batch, n_seq, encoder_embedding_dim = 16, 64, 512
model = (
_Encoder(encoder_embedding_dim=encoder_embedding_dim, encoder_n_convolution=3, encoder_kernel_size=5)
.to(self.device)
.eval()
)
x = torch.rand(n_batch, encoder_embedding_dim, n_seq, device=self.device, dtype=self.dtype)
input_lengths = torch.ones(n_batch, device=self.device, dtype=torch.int32) * n_seq
out = model(x, input_lengths)
assert out.size() == (n_batch, n_seq, encoder_embedding_dim)
def _get_decoder_model(n_mels=80, encoder_embedding_dim=512, decoder_max_step=2000, gate_threshold=0.5):
model = _Decoder(
n_mels=n_mels,
n_frames_per_step=1,
encoder_embedding_dim=encoder_embedding_dim,
decoder_rnn_dim=1024,
decoder_max_step=decoder_max_step,
decoder_dropout=0.1,
decoder_early_stopping=True,
attention_rnn_dim=1024,
attention_hidden_dim=128,
attention_location_n_filter=32,
attention_location_kernel_size=31,
attention_dropout=0.1,
prenet_dim=256,
gate_threshold=gate_threshold,
)
return model
class Tacotron2DecoderTests(TorchscriptConsistencyMixin):
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_decoder_torchscript_consistency(self, n_batch):
r"""Validate the torchscript consistency of a Decoder."""
n_mels = 80
n_seq = 200
encoder_embedding_dim = 256
n_time_steps = 150
model = _get_decoder_model(n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim)
model = model.to(self.device).eval()
memory = torch.rand(n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device)
decoder_inputs = torch.rand(n_batch, n_mels, n_time_steps, dtype=self.dtype, device=self.device)
memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device)
self._assert_torchscript_consistency(model, (memory, decoder_inputs, memory_lengths))
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_decoder_output_shape(self, n_batch):
r"""Feed tensors with specific shape to Tacotron2 Decoder and validate
that it outputs with a tensor with expected shape.
"""
n_mels = 80
n_seq = 200
encoder_embedding_dim = 256
n_time_steps = 150
model = _get_decoder_model(n_mels=n_mels, encoder_embedding_dim=encoder_embedding_dim)
model = model.to(self.device).eval()
memory = torch.rand(n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device)
decoder_inputs = torch.rand(n_batch, n_mels, n_time_steps, dtype=self.dtype, device=self.device)
memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device)
mel_specgram, gate_outputs, alignments = model(memory, decoder_inputs, memory_lengths)
assert mel_specgram.size() == (n_batch, n_mels, n_time_steps)
assert gate_outputs.size() == (n_batch, n_time_steps)
assert alignments.size() == (n_batch, n_time_steps, n_seq)
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_decoder_inference_torchscript_consistency(self, n_batch):
r"""Validate the torchscript consistency of a Decoder."""
n_mels = 80
n_seq = 200
encoder_embedding_dim = 256
decoder_max_step = 300 # make inference more efficient
gate_threshold = 0.505 # make inference more efficient
model = _get_decoder_model(
n_mels=n_mels,
encoder_embedding_dim=encoder_embedding_dim,
decoder_max_step=decoder_max_step,
gate_threshold=gate_threshold,
)
model = model.to(self.device).eval()
memory = torch.rand(n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device)
memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device)
model_wrapper = Tacotron2DecoderInferenceWrapper(model)
self._assert_torchscript_consistency(model_wrapper, (memory, memory_lengths))
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_decoder_inference_output_shape(self, n_batch):
r"""Validate the torchscript consistency of a Decoder."""
n_mels = 80
n_seq = 200
encoder_embedding_dim = 256
decoder_max_step = 300 # make inference more efficient
gate_threshold = 0.505 # if set to 0.5, the model will only run one step
model = _get_decoder_model(
n_mels=n_mels,
encoder_embedding_dim=encoder_embedding_dim,
decoder_max_step=decoder_max_step,
gate_threshold=gate_threshold,
)
model = model.to(self.device).eval()
memory = torch.rand(n_batch, n_seq, encoder_embedding_dim, dtype=self.dtype, device=self.device)
memory_lengths = torch.ones(n_batch, dtype=torch.int32, device=self.device)
mel_specgram, mel_specgram_lengths, gate_outputs, alignments = model.infer(memory, memory_lengths)
assert len(mel_specgram.size()) == 3
assert mel_specgram.size()[:-1] == (
n_batch,
n_mels,
)
assert mel_specgram.size()[2] == mel_specgram_lengths.max().item()
assert len(mel_specgram_lengths.size()) == 1
assert mel_specgram_lengths.size()[0] == n_batch
assert mel_specgram_lengths.max().item() <= model.decoder_max_step
assert len(gate_outputs.size()) == 2
assert gate_outputs.size()[0] == n_batch
assert gate_outputs.size()[1] == mel_specgram_lengths.max().item()
assert len(alignments.size()) == 2
assert alignments.size()[0] == n_seq
assert alignments.size()[1] == mel_specgram_lengths.max().item() * n_batch
def _get_tacotron2_model(n_mels, decoder_max_step=2000, gate_threshold=0.5):
return Tacotron2(
mask_padding=False,
n_mels=n_mels,
n_symbol=148,
n_frames_per_step=1,
symbol_embedding_dim=512,
encoder_embedding_dim=512,
encoder_n_convolution=3,
encoder_kernel_size=5,
decoder_rnn_dim=1024,
decoder_max_step=decoder_max_step,
decoder_dropout=0.1,
decoder_early_stopping=True,
attention_rnn_dim=1024,
attention_hidden_dim=128,
attention_location_n_filter=32,
attention_location_kernel_size=31,
attention_dropout=0.1,
prenet_dim=256,
postnet_n_convolution=5,
postnet_kernel_size=5,
postnet_embedding_dim=512,
gate_threshold=gate_threshold,
)
class Tacotron2Tests(TorchscriptConsistencyMixin):
def _get_inputs(self, n_mels: int, n_batch: int, max_mel_specgram_length: int, max_text_length: int):
text = torch.randint(0, 148, (n_batch, max_text_length), dtype=torch.int32, device=self.device)
text_lengths = max_text_length * torch.ones((n_batch,), dtype=torch.int32, device=self.device)
mel_specgram = torch.rand(
n_batch,
n_mels,
max_mel_specgram_length,
dtype=self.dtype,
device=self.device,
)
mel_specgram_lengths = max_mel_specgram_length * torch.ones((n_batch,), dtype=torch.int32, device=self.device)
return text, text_lengths, mel_specgram, mel_specgram_lengths
@parameterized.expand(
[
(1,),
(16,),
]
)
@skipIfPy310
def test_tacotron2_torchscript_consistency(self, n_batch):
r"""Validate the torchscript consistency of a Tacotron2."""
n_mels = 80
max_mel_specgram_length = 300
max_text_length = 100
model = _get_tacotron2_model(n_mels).to(self.device).eval()
inputs = self._get_inputs(n_mels, n_batch, max_mel_specgram_length, max_text_length)
self._assert_torchscript_consistency(model, inputs)
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_tacotron2_output_shape(self, n_batch):
r"""Feed tensors with specific shape to Tacotron2 and validate
that it outputs with a tensor with expected shape.
"""
n_mels = 80
max_mel_specgram_length = 300
max_text_length = 100
model = _get_tacotron2_model(n_mels).to(self.device).eval()
inputs = self._get_inputs(n_mels, n_batch, max_mel_specgram_length, max_text_length)
mel_out, mel_out_postnet, gate_outputs, alignments = model(*inputs)
assert mel_out.size() == (n_batch, n_mels, max_mel_specgram_length)
assert mel_out_postnet.size() == (n_batch, n_mels, max_mel_specgram_length)
assert gate_outputs.size() == (n_batch, max_mel_specgram_length)
assert alignments.size() == (n_batch, max_mel_specgram_length, max_text_length)
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_tacotron2_backward(self, n_batch):
r"""Make sure calling the backward function on Tacotron2's outputs does
not error out. Following:
https://github.com/pytorch/vision/blob/23b8760374a5aaed53c6e5fc83a7e83dbe3b85df/test/test_models.py#L255
"""
n_mels = 80
max_mel_specgram_length = 300
max_text_length = 100
model = _get_tacotron2_model(n_mels).to(self.device)
inputs = self._get_inputs(n_mels, n_batch, max_mel_specgram_length, max_text_length)
mel_out, mel_out_postnet, gate_outputs, _ = model(*inputs)
mel_out.sum().backward(retain_graph=True)
mel_out_postnet.sum().backward(retain_graph=True)
gate_outputs.sum().backward()
def _get_inference_inputs(self, n_batch: int, max_text_length: int):
text = torch.randint(0, 148, (n_batch, max_text_length), dtype=torch.int32, device=self.device)
text_lengths = max_text_length * torch.ones((n_batch,), dtype=torch.int32, device=self.device)
return text, text_lengths
@parameterized.expand(
[
(1,),
(16,),
]
)
@skipIfPy310
def test_tacotron2_inference_torchscript_consistency(self, n_batch):
r"""Validate the torchscript consistency of Tacotron2 inference function."""
n_mels = 40
max_text_length = 100
decoder_max_step = 200 # make inference more efficient
gate_threshold = 0.51 # if set to 0.5, the model will only run one step
model = (
_get_tacotron2_model(n_mels, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold)
.to(self.device)
.eval()
)
inputs = self._get_inference_inputs(n_batch, max_text_length)
model_wrapper = Tacotron2InferenceWrapper(model)
self._assert_torchscript_consistency(model_wrapper, inputs)
@parameterized.expand(
[
(1,),
(16,),
]
)
def test_tacotron2_inference_output_shape(self, n_batch):
r"""Feed tensors with specific shape to Tacotron2 inference function and validate
that it outputs with a tensor with expected shape.
"""
n_mels = 40
max_text_length = 100
decoder_max_step = 200 # make inference more efficient
gate_threshold = 0.51 # if set to 0.5, the model will only run one step
model = (
_get_tacotron2_model(n_mels, decoder_max_step=decoder_max_step, gate_threshold=gate_threshold)
.to(self.device)
.eval()
)
inputs = self._get_inference_inputs(n_batch, max_text_length)
mel_out, mel_specgram_lengths, alignments = model.infer(*inputs)
# There is no guarantee on exactly what max_mel_specgram_length should be
# We only know that it should be smaller than model.decoder.decoder_max_step
assert len(mel_out.size()) == 3
assert mel_out.size()[:2] == (
n_batch,
n_mels,
)
assert mel_out.size()[2] == mel_specgram_lengths.max().item()
assert len(mel_specgram_lengths.size()) == 1
assert mel_specgram_lengths.size()[0] == n_batch
assert mel_specgram_lengths.max().item() <= model.decoder.decoder_max_step
assert len(alignments.size()) == 3
assert alignments.size()[0] == n_batch
assert alignments.size()[1] == mel_specgram_lengths.max().item()
assert alignments.size()[2] == max_text_length
|