1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
from typing import List
import torch
from parameterized import parameterized
from torchaudio import sox_effects
from torchaudio_unittest.common_utils import (
get_sinusoid,
save_wav,
skipIfNoSox,
TempDirMixin,
torch_script,
TorchaudioTestCase,
)
from .common import load_params
class SoxEffectTensorTransform(torch.nn.Module):
effects: List[List[str]]
def __init__(self, effects: List[List[str]], sample_rate: int, channels_first: bool):
super().__init__()
self.effects = effects
self.sample_rate = sample_rate
self.channels_first = channels_first
def forward(self, tensor: torch.Tensor):
return sox_effects.apply_effects_tensor(tensor, self.sample_rate, self.effects, self.channels_first)
class SoxEffectFileTransform(torch.nn.Module):
effects: List[List[str]]
channels_first: bool
def __init__(self, effects: List[List[str]], channels_first: bool):
super().__init__()
self.effects = effects
self.channels_first = channels_first
def forward(self, path: str):
return sox_effects.apply_effects_file(path, self.effects, self.channels_first)
@skipIfNoSox
class TestTorchScript(TempDirMixin, TorchaudioTestCase):
@parameterized.expand(
load_params("sox_effect_test_args.jsonl"),
name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
)
def test_apply_effects_tensor(self, args):
effects = args["effects"]
channels_first = True
num_channels = args.get("num_channels", 2)
input_sr = args.get("input_sample_rate", 8000)
trans = SoxEffectTensorTransform(effects, input_sr, channels_first)
trans = torch_script(trans)
wav = get_sinusoid(
frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first
)
found, sr_found = trans(wav)
expected, sr_expected = sox_effects.apply_effects_tensor(wav, input_sr, effects, channels_first)
assert sr_found == sr_expected
self.assertEqual(expected, found)
@parameterized.expand(
load_params("sox_effect_test_args.jsonl"),
name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
)
def test_apply_effects_file(self, args):
effects = args["effects"]
channels_first = True
num_channels = args.get("num_channels", 2)
input_sr = args.get("input_sample_rate", 8000)
trans = SoxEffectFileTransform(effects, channels_first)
trans = torch_script(trans)
path = self.get_temp_path("input.wav")
wav = get_sinusoid(
frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first
)
save_wav(path, wav, sample_rate=input_sr, channels_first=channels_first)
found, sr_found = trans(path)
expected, sr_expected = sox_effects.apply_effects_file(path, effects, channels_first)
assert sr_found == sr_expected
self.assertEqual(expected, found)
|