1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
import unittest
from typing import List
import torch
import torchaudio.transforms as T
from parameterized import parameterized
from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, rnnt_utils, TestBaseMixin
class _DeterministicWrapper(torch.nn.Module):
"""Helper transform wrapper to make the given transform deterministic"""
def __init__(self, transform, seed=0):
super().__init__()
self.seed = seed
self.transform = transform
def forward(self, input: torch.Tensor):
torch.random.manual_seed(self.seed)
return self.transform(input)
class AutogradTestMixin(TestBaseMixin):
def assert_grad(
self,
transform: torch.nn.Module,
inputs: List[torch.Tensor],
*,
nondet_tol: float = 0.0,
enable_all_grad: bool = True,
):
transform = transform.to(dtype=torch.float64, device=self.device)
# gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or
# `torch.cdouble`, when the default eps and tolerance values are used.
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device)
if enable_all_grad:
i.requires_grad = True
inputs_.append(i)
assert gradcheck(transform, inputs_)
assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol)
@parameterized.expand(
[
({"pad": 0, "normalized": False, "power": None, "return_complex": True},),
({"pad": 3, "normalized": False, "power": None, "return_complex": True},),
({"pad": 0, "normalized": True, "power": None, "return_complex": True},),
({"pad": 3, "normalized": True, "power": None, "return_complex": True},),
({"pad": 0, "normalized": False, "power": None},),
({"pad": 3, "normalized": False, "power": None},),
({"pad": 0, "normalized": True, "power": None},),
({"pad": 3, "normalized": True, "power": None},),
({"pad": 0, "normalized": False, "power": 1.0},),
({"pad": 3, "normalized": False, "power": 1.0},),
({"pad": 0, "normalized": True, "power": 1.0},),
({"pad": 3, "normalized": True, "power": 1.0},),
({"pad": 0, "normalized": False, "power": 2.0},),
({"pad": 3, "normalized": False, "power": 2.0},),
({"pad": 0, "normalized": True, "power": 2.0},),
({"pad": 3, "normalized": True, "power": 2.0},),
]
)
def test_spectrogram(self, kwargs):
# replication_pad1d_backward_cuda is not deteministic and
# gives very small (~2.7756e-17) difference.
#
# See https://github.com/pytorch/pytorch/issues/54093
transform = T.Spectrogram(**kwargs)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
def test_inverse_spectrogram(self):
# create a realistic input:
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
length = waveform.shape[-1]
spectrogram = get_spectrogram(waveform, n_fft=400)
# test
inv_transform = T.InverseSpectrogram(n_fft=400)
self.assert_grad(inv_transform, [spectrogram, length])
def test_melspectrogram(self):
# replication_pad1d_backward_cuda is not deteministic and
# gives very small (~2.7756e-17) difference.
#
# See https://github.com/pytorch/pytorch/issues/54093
sample_rate = 8000
transform = T.MelSpectrogram(sample_rate=sample_rate)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
@nested_params(
[0, 0.99],
[False, True],
)
def test_griffinlim(self, momentum, rand_init):
n_fft = 80
power = 1
n_iter = 2
spec = get_spectrogram(get_whitenoise(sample_rate=8000, duration=0.01, n_channels=2), n_fft=n_fft, power=power)
transform = _DeterministicWrapper(
T.GriffinLim(n_fft=n_fft, n_iter=n_iter, momentum=momentum, rand_init=rand_init, power=power)
)
self.assert_grad(transform, [spec])
@parameterized.expand([(False,), (True,)])
def test_mfcc(self, log_mels):
sample_rate = 8000
transform = T.MFCC(sample_rate=sample_rate, log_mels=log_mels)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
@parameterized.expand([(False,), (True,)])
def test_lfcc(self, log_lf):
sample_rate = 8000
transform = T.LFCC(sample_rate=sample_rate, log_lf=log_lf)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
def test_compute_deltas(self):
transform = T.ComputeDeltas()
spec = torch.rand(10, 20)
self.assert_grad(transform, [spec])
@parameterized.expand([(8000, 8000), (8000, 4000), (4000, 8000)])
def test_resample(self, orig_freq, new_freq):
transform = T.Resample(orig_freq=orig_freq, new_freq=new_freq)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform])
@parameterized.expand([("linear",), ("exponential",), ("logarithmic",), ("quarter_sine",), ("half_sine",)])
def test_fade(self, fade_shape):
transform = T.Fade(fade_shape=fade_shape)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
@parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)])
def test_masking(self, masking_transform):
sample_rate = 8000
n_fft = 400
spectrogram = get_spectrogram(
get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
)
deterministic_transform = _DeterministicWrapper(masking_transform(400))
self.assert_grad(deterministic_transform, [spectrogram])
@parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)])
def test_masking_iid(self, masking_transform):
sample_rate = 8000
n_fft = 400
specs = [
get_spectrogram(
get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2, seed=i), n_fft=n_fft, power=1
)
for i in range(3)
]
batch = torch.stack(specs)
assert batch.ndim == 4
deterministic_transform = _DeterministicWrapper(masking_transform(400, True))
self.assert_grad(deterministic_transform, [batch])
def test_time_masking_p(self):
sample_rate = 8000
n_fft = 400
spectrogram = get_spectrogram(
get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
)
time_mask = T.TimeMasking(400, iid_masks=False, p=0.1)
deterministic_transform = _DeterministicWrapper(time_mask)
self.assert_grad(deterministic_transform, [spectrogram])
def test_spectral_centroid(self):
sample_rate = 8000
transform = T.SpectralCentroid(sample_rate=sample_rate)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform], nondet_tol=1e-10)
def test_amplitude_to_db(self):
sample_rate = 8000
transform = T.AmplitudeToDB()
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform])
def test_melscale(self):
sample_rate = 8000
n_fft = 400
n_stft = n_fft // 2 + 1
n_mels = 128
transform = T.MelScale(sample_rate=sample_rate, n_mels=n_mels, n_stft=n_stft)
spec = get_spectrogram(
get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
)
self.assert_grad(transform, [spec])
@parameterized.expand([(1.5, "amplitude"), (2, "power"), (10, "db")])
def test_vol(self, gain, gain_type):
sample_rate = 8000
transform = T.Vol(gain=gain, gain_type=gain_type)
waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
self.assert_grad(transform, [waveform])
@parameterized.expand(
[
({"cmn_window": 100, "min_cmn_window": 50, "center": False, "norm_vars": False},),
({"cmn_window": 100, "min_cmn_window": 50, "center": True, "norm_vars": False},),
({"cmn_window": 100, "min_cmn_window": 50, "center": False, "norm_vars": True},),
({"cmn_window": 100, "min_cmn_window": 50, "center": True, "norm_vars": True},),
]
)
def test_sliding_window_cmn(self, kwargs):
n_fft = 10
power = 1
spec = get_spectrogram(get_whitenoise(sample_rate=200, duration=0.05, n_channels=2), n_fft=n_fft, power=power)
spec_reshaped = spec.transpose(-1, -2)
transform = T.SlidingWindowCmn(**kwargs)
self.assert_grad(transform, [spec_reshaped])
@unittest.expectedFailure
def test_timestretch_zeros_fail(self):
"""Test that ``T.TimeStretch`` fails gradcheck at 0
This is because ``F.phase_vocoder`` converts data from cartesian to polar coordinate,
which performs ``atan2(img, real)``, and gradient is not defined at 0.
"""
n_fft = 16
transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=0.99)
waveform = torch.zeros(2, 40)
spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None)
self.assert_grad(transform, [spectrogram])
@nested_params([0.7, 0.8, 0.9, 1.0, 1.3])
def test_timestretch_non_zero(self, rate):
"""Verify that ``T.TimeStretch`` does not fail if it's not close to 0
``T.TimeStrech`` is not differentiable around 0, so this test checks the differentiability
for cases where input is not zero.
As tested above, when spectrogram contains values close to zero, the gradients are unstable
and gradcheck fails.
In this test, we generate spectrogram from random signal, then we push the points around
zero away from the origin.
This process does not reflect the real use-case, and it is not practical for users, but
this helps us understand to what degree the function is differentiable and when not.
"""
n_fft = 16
transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=rate)
waveform = get_whitenoise(sample_rate=40, duration=1, n_channels=2)
spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None)
# 1e-3 is too small (on CPU)
epsilon = 2e-2
too_close = spectrogram.abs() < epsilon
spectrogram[too_close] = epsilon * spectrogram[too_close] / spectrogram[too_close].abs()
self.assert_grad(transform, [spectrogram])
def test_psd(self):
transform = T.PSD()
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
spectrogram = get_spectrogram(waveform, n_fft=400)
self.assert_grad(transform, [spectrogram])
@parameterized.expand(
[
[True],
[False],
]
)
def test_psd_with_mask(self, multi_mask):
transform = T.PSD(multi_mask=multi_mask)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
spectrogram = get_spectrogram(waveform, n_fft=400)
if multi_mask:
mask = torch.rand(spectrogram.shape[-3:])
else:
mask = torch.rand(spectrogram.shape[-2:])
self.assert_grad(transform, [spectrogram, mask])
@parameterized.expand(
[
"ref_channel",
# stv_power and stv_evd test time too long, comment for now
# "stv_power",
# "stv_evd",
]
)
def test_mvdr(self, solution):
transform = T.MVDR(solution=solution)
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
spectrogram = get_spectrogram(waveform, n_fft=400)
mask_s = torch.rand(spectrogram.shape[-2:])
mask_n = torch.rand(spectrogram.shape[-2:])
self.assert_grad(transform, [spectrogram, mask_s, mask_n])
def test_rtf_mvdr(self):
transform = T.RTFMVDR()
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
specgram = get_spectrogram(waveform, n_fft=400)
channel, freq, _ = specgram.shape
rtf = torch.rand(freq, channel, dtype=torch.cfloat)
psd_n = torch.rand(freq, channel, channel, dtype=torch.cfloat)
reference_channel = 0
self.assert_grad(transform, [specgram, rtf, psd_n, reference_channel])
def test_souden_mvdr(self):
transform = T.SoudenMVDR()
waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
specgram = get_spectrogram(waveform, n_fft=400)
channel, freq, _ = specgram.shape
psd_s = torch.rand(freq, channel, channel, dtype=torch.cfloat)
psd_n = torch.rand(freq, channel, channel, dtype=torch.cfloat)
reference_channel = 0
self.assert_grad(transform, [specgram, psd_s, psd_n, reference_channel])
@nested_params(
["Convolve", "FFTConvolve"],
["full", "valid", "same"],
)
def test_convolve(self, cls, mode):
leading_dims = (4, 3, 2)
L_x, L_y = 23, 40
x = torch.rand(*leading_dims, L_x)
y = torch.rand(*leading_dims, L_y)
convolve = getattr(T, cls)(mode=mode)
self.assert_grad(convolve, [x, y])
def test_speed(self):
leading_dims = (3, 2)
time = 200
waveform = torch.rand(*leading_dims, time, requires_grad=True)
lengths = torch.randint(1, time, leading_dims)
speed = T.Speed(1000, 1.1)
self.assert_grad(speed, (waveform, lengths), enable_all_grad=False)
def test_speed_perturbation(self):
leading_dims = (3, 2)
time = 200
waveform = torch.rand(*leading_dims, time, requires_grad=True)
lengths = torch.randint(1, time, leading_dims)
speed = T.SpeedPerturbation(1000, [0.9])
self.assert_grad(speed, (waveform, lengths), enable_all_grad=False)
@nested_params([True, False])
def test_add_noise(self, use_lengths):
leading_dims = (2, 3)
L = 31
waveform = torch.rand(*leading_dims, L)
noise = torch.rand(*leading_dims, L)
if use_lengths:
lengths = torch.rand(*leading_dims)
else:
lengths = None
snr = torch.rand(*leading_dims)
add_noise = T.AddNoise()
self.assert_grad(add_noise, (waveform, noise, snr, lengths))
def test_preemphasis(self):
waveform = torch.rand(3, 4, 10)
preemphasis = T.Preemphasis(coeff=0.97)
self.assert_grad(preemphasis, (waveform,))
def test_deemphasis(self):
waveform = torch.rand(3, 4, 10)
deemphasis = T.Deemphasis(coeff=0.97)
self.assert_grad(deemphasis, (waveform,))
class AutogradTestFloat32(TestBaseMixin):
def assert_grad(
self,
transform: torch.nn.Module,
inputs: List[torch.Tensor],
):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=torch.float32, device=self.device)
inputs_.append(i)
# gradcheck with float32 requires higher atol and epsilon
assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.0)
@parameterized.expand(
[
(rnnt_utils.get_B1_T10_U3_D4_data,),
(rnnt_utils.get_B2_T4_U3_D3_data,),
(rnnt_utils.get_B1_T2_U3_D5_data,),
]
)
def test_rnnt_loss(self, data_func):
def get_data(data_func, device):
data = data_func()
if type(data) == tuple:
data = data[0]
return data
data = get_data(data_func, self.device)
inputs = (
data["logits"].to(torch.float32),
data["targets"],
data["logit_lengths"],
data["target_lengths"],
)
loss = T.RNNTLoss(blank=data["blank"])
self.assert_grad(loss, inputs)
|