File: autograd_test_impl.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (416 lines) | stat: -rw-r--r-- 16,767 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import unittest
from typing import List

import torch
import torchaudio.transforms as T
from parameterized import parameterized
from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, rnnt_utils, TestBaseMixin


class _DeterministicWrapper(torch.nn.Module):
    """Helper transform wrapper to make the given transform deterministic"""

    def __init__(self, transform, seed=0):
        super().__init__()
        self.seed = seed
        self.transform = transform

    def forward(self, input: torch.Tensor):
        torch.random.manual_seed(self.seed)
        return self.transform(input)


class AutogradTestMixin(TestBaseMixin):
    def assert_grad(
        self,
        transform: torch.nn.Module,
        inputs: List[torch.Tensor],
        *,
        nondet_tol: float = 0.0,
        enable_all_grad: bool = True,
    ):
        transform = transform.to(dtype=torch.float64, device=self.device)

        # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or
        # `torch.cdouble`, when the default eps and tolerance values are used.
        inputs_ = []
        for i in inputs:
            if torch.is_tensor(i):
                i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device)
                if enable_all_grad:
                    i.requires_grad = True
            inputs_.append(i)
        assert gradcheck(transform, inputs_)
        assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol)

    @parameterized.expand(
        [
            ({"pad": 0, "normalized": False, "power": None, "return_complex": True},),
            ({"pad": 3, "normalized": False, "power": None, "return_complex": True},),
            ({"pad": 0, "normalized": True, "power": None, "return_complex": True},),
            ({"pad": 3, "normalized": True, "power": None, "return_complex": True},),
            ({"pad": 0, "normalized": False, "power": None},),
            ({"pad": 3, "normalized": False, "power": None},),
            ({"pad": 0, "normalized": True, "power": None},),
            ({"pad": 3, "normalized": True, "power": None},),
            ({"pad": 0, "normalized": False, "power": 1.0},),
            ({"pad": 3, "normalized": False, "power": 1.0},),
            ({"pad": 0, "normalized": True, "power": 1.0},),
            ({"pad": 3, "normalized": True, "power": 1.0},),
            ({"pad": 0, "normalized": False, "power": 2.0},),
            ({"pad": 3, "normalized": False, "power": 2.0},),
            ({"pad": 0, "normalized": True, "power": 2.0},),
            ({"pad": 3, "normalized": True, "power": 2.0},),
        ]
    )
    def test_spectrogram(self, kwargs):
        # replication_pad1d_backward_cuda is not deteministic and
        # gives very small (~2.7756e-17) difference.
        #
        # See https://github.com/pytorch/pytorch/issues/54093
        transform = T.Spectrogram(**kwargs)
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    def test_inverse_spectrogram(self):
        # create a realistic input:
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        length = waveform.shape[-1]
        spectrogram = get_spectrogram(waveform, n_fft=400)
        # test
        inv_transform = T.InverseSpectrogram(n_fft=400)
        self.assert_grad(inv_transform, [spectrogram, length])

    def test_melspectrogram(self):
        # replication_pad1d_backward_cuda is not deteministic and
        # gives very small (~2.7756e-17) difference.
        #
        # See https://github.com/pytorch/pytorch/issues/54093
        sample_rate = 8000
        transform = T.MelSpectrogram(sample_rate=sample_rate)
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    @nested_params(
        [0, 0.99],
        [False, True],
    )
    def test_griffinlim(self, momentum, rand_init):
        n_fft = 80
        power = 1
        n_iter = 2

        spec = get_spectrogram(get_whitenoise(sample_rate=8000, duration=0.01, n_channels=2), n_fft=n_fft, power=power)
        transform = _DeterministicWrapper(
            T.GriffinLim(n_fft=n_fft, n_iter=n_iter, momentum=momentum, rand_init=rand_init, power=power)
        )
        self.assert_grad(transform, [spec])

    @parameterized.expand([(False,), (True,)])
    def test_mfcc(self, log_mels):
        sample_rate = 8000
        transform = T.MFCC(sample_rate=sample_rate, log_mels=log_mels)
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    @parameterized.expand([(False,), (True,)])
    def test_lfcc(self, log_lf):
        sample_rate = 8000
        transform = T.LFCC(sample_rate=sample_rate, log_lf=log_lf)
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    def test_compute_deltas(self):
        transform = T.ComputeDeltas()
        spec = torch.rand(10, 20)
        self.assert_grad(transform, [spec])

    @parameterized.expand([(8000, 8000), (8000, 4000), (4000, 8000)])
    def test_resample(self, orig_freq, new_freq):
        transform = T.Resample(orig_freq=orig_freq, new_freq=new_freq)
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform])

    @parameterized.expand([("linear",), ("exponential",), ("logarithmic",), ("quarter_sine",), ("half_sine",)])
    def test_fade(self, fade_shape):
        transform = T.Fade(fade_shape=fade_shape)
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    @parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)])
    def test_masking(self, masking_transform):
        sample_rate = 8000
        n_fft = 400
        spectrogram = get_spectrogram(
            get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
        )
        deterministic_transform = _DeterministicWrapper(masking_transform(400))
        self.assert_grad(deterministic_transform, [spectrogram])

    @parameterized.expand([(T.TimeMasking,), (T.FrequencyMasking,)])
    def test_masking_iid(self, masking_transform):
        sample_rate = 8000
        n_fft = 400
        specs = [
            get_spectrogram(
                get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2, seed=i), n_fft=n_fft, power=1
            )
            for i in range(3)
        ]

        batch = torch.stack(specs)
        assert batch.ndim == 4
        deterministic_transform = _DeterministicWrapper(masking_transform(400, True))
        self.assert_grad(deterministic_transform, [batch])

    def test_time_masking_p(self):
        sample_rate = 8000
        n_fft = 400
        spectrogram = get_spectrogram(
            get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
        )
        time_mask = T.TimeMasking(400, iid_masks=False, p=0.1)
        deterministic_transform = _DeterministicWrapper(time_mask)
        self.assert_grad(deterministic_transform, [spectrogram])

    def test_spectral_centroid(self):
        sample_rate = 8000
        transform = T.SpectralCentroid(sample_rate=sample_rate)
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform], nondet_tol=1e-10)

    def test_amplitude_to_db(self):
        sample_rate = 8000
        transform = T.AmplitudeToDB()
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform])

    def test_melscale(self):
        sample_rate = 8000
        n_fft = 400
        n_stft = n_fft // 2 + 1
        n_mels = 128
        transform = T.MelScale(sample_rate=sample_rate, n_mels=n_mels, n_stft=n_stft)
        spec = get_spectrogram(
            get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1
        )
        self.assert_grad(transform, [spec])

    @parameterized.expand([(1.5, "amplitude"), (2, "power"), (10, "db")])
    def test_vol(self, gain, gain_type):
        sample_rate = 8000
        transform = T.Vol(gain=gain, gain_type=gain_type)
        waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2)
        self.assert_grad(transform, [waveform])

    @parameterized.expand(
        [
            ({"cmn_window": 100, "min_cmn_window": 50, "center": False, "norm_vars": False},),
            ({"cmn_window": 100, "min_cmn_window": 50, "center": True, "norm_vars": False},),
            ({"cmn_window": 100, "min_cmn_window": 50, "center": False, "norm_vars": True},),
            ({"cmn_window": 100, "min_cmn_window": 50, "center": True, "norm_vars": True},),
        ]
    )
    def test_sliding_window_cmn(self, kwargs):
        n_fft = 10
        power = 1
        spec = get_spectrogram(get_whitenoise(sample_rate=200, duration=0.05, n_channels=2), n_fft=n_fft, power=power)
        spec_reshaped = spec.transpose(-1, -2)

        transform = T.SlidingWindowCmn(**kwargs)
        self.assert_grad(transform, [spec_reshaped])

    @unittest.expectedFailure
    def test_timestretch_zeros_fail(self):
        """Test that ``T.TimeStretch`` fails gradcheck at 0

        This is because ``F.phase_vocoder`` converts data from cartesian to polar coordinate,
        which performs ``atan2(img, real)``, and gradient is not defined at 0.
        """
        n_fft = 16
        transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=0.99)
        waveform = torch.zeros(2, 40)
        spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None)
        self.assert_grad(transform, [spectrogram])

    @nested_params([0.7, 0.8, 0.9, 1.0, 1.3])
    def test_timestretch_non_zero(self, rate):
        """Verify that ``T.TimeStretch`` does not fail if it's not close to 0

        ``T.TimeStrech`` is not differentiable around 0, so this test checks the differentiability
        for cases where input is not zero.

        As tested above, when spectrogram contains values close to zero, the gradients are unstable
        and gradcheck fails.

        In this test, we generate spectrogram from random signal, then we push the points around
        zero away from the origin.

        This process does not reflect the real use-case, and it is not practical for users, but
        this helps us understand to what degree the function is differentiable and when not.
        """
        n_fft = 16
        transform = T.TimeStretch(n_freq=n_fft // 2 + 1, fixed_rate=rate)
        waveform = get_whitenoise(sample_rate=40, duration=1, n_channels=2)
        spectrogram = get_spectrogram(waveform, n_fft=n_fft, power=None)

        # 1e-3 is too small (on CPU)
        epsilon = 2e-2
        too_close = spectrogram.abs() < epsilon
        spectrogram[too_close] = epsilon * spectrogram[too_close] / spectrogram[too_close].abs()
        self.assert_grad(transform, [spectrogram])

    def test_psd(self):
        transform = T.PSD()
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        spectrogram = get_spectrogram(waveform, n_fft=400)
        self.assert_grad(transform, [spectrogram])

    @parameterized.expand(
        [
            [True],
            [False],
        ]
    )
    def test_psd_with_mask(self, multi_mask):
        transform = T.PSD(multi_mask=multi_mask)
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        spectrogram = get_spectrogram(waveform, n_fft=400)
        if multi_mask:
            mask = torch.rand(spectrogram.shape[-3:])
        else:
            mask = torch.rand(spectrogram.shape[-2:])

        self.assert_grad(transform, [spectrogram, mask])

    @parameterized.expand(
        [
            "ref_channel",
            # stv_power and stv_evd test time too long, comment for now
            # "stv_power",
            # "stv_evd",
        ]
    )
    def test_mvdr(self, solution):
        transform = T.MVDR(solution=solution)
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        spectrogram = get_spectrogram(waveform, n_fft=400)
        mask_s = torch.rand(spectrogram.shape[-2:])
        mask_n = torch.rand(spectrogram.shape[-2:])
        self.assert_grad(transform, [spectrogram, mask_s, mask_n])

    def test_rtf_mvdr(self):
        transform = T.RTFMVDR()
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        specgram = get_spectrogram(waveform, n_fft=400)
        channel, freq, _ = specgram.shape
        rtf = torch.rand(freq, channel, dtype=torch.cfloat)
        psd_n = torch.rand(freq, channel, channel, dtype=torch.cfloat)
        reference_channel = 0
        self.assert_grad(transform, [specgram, rtf, psd_n, reference_channel])

    def test_souden_mvdr(self):
        transform = T.SoudenMVDR()
        waveform = get_whitenoise(sample_rate=8000, duration=0.05, n_channels=2)
        specgram = get_spectrogram(waveform, n_fft=400)
        channel, freq, _ = specgram.shape
        psd_s = torch.rand(freq, channel, channel, dtype=torch.cfloat)
        psd_n = torch.rand(freq, channel, channel, dtype=torch.cfloat)
        reference_channel = 0
        self.assert_grad(transform, [specgram, psd_s, psd_n, reference_channel])

    @nested_params(
        ["Convolve", "FFTConvolve"],
        ["full", "valid", "same"],
    )
    def test_convolve(self, cls, mode):
        leading_dims = (4, 3, 2)
        L_x, L_y = 23, 40
        x = torch.rand(*leading_dims, L_x)
        y = torch.rand(*leading_dims, L_y)
        convolve = getattr(T, cls)(mode=mode)
        self.assert_grad(convolve, [x, y])

    def test_speed(self):
        leading_dims = (3, 2)
        time = 200

        waveform = torch.rand(*leading_dims, time, requires_grad=True)
        lengths = torch.randint(1, time, leading_dims)
        speed = T.Speed(1000, 1.1)
        self.assert_grad(speed, (waveform, lengths), enable_all_grad=False)

    def test_speed_perturbation(self):
        leading_dims = (3, 2)
        time = 200
        waveform = torch.rand(*leading_dims, time, requires_grad=True)
        lengths = torch.randint(1, time, leading_dims)
        speed = T.SpeedPerturbation(1000, [0.9])
        self.assert_grad(speed, (waveform, lengths), enable_all_grad=False)

    @nested_params([True, False])
    def test_add_noise(self, use_lengths):
        leading_dims = (2, 3)
        L = 31

        waveform = torch.rand(*leading_dims, L)
        noise = torch.rand(*leading_dims, L)
        if use_lengths:
            lengths = torch.rand(*leading_dims)
        else:
            lengths = None
        snr = torch.rand(*leading_dims)

        add_noise = T.AddNoise()
        self.assert_grad(add_noise, (waveform, noise, snr, lengths))

    def test_preemphasis(self):
        waveform = torch.rand(3, 4, 10)
        preemphasis = T.Preemphasis(coeff=0.97)
        self.assert_grad(preemphasis, (waveform,))

    def test_deemphasis(self):
        waveform = torch.rand(3, 4, 10)
        deemphasis = T.Deemphasis(coeff=0.97)
        self.assert_grad(deemphasis, (waveform,))


class AutogradTestFloat32(TestBaseMixin):
    def assert_grad(
        self,
        transform: torch.nn.Module,
        inputs: List[torch.Tensor],
    ):
        inputs_ = []
        for i in inputs:
            if torch.is_tensor(i):
                i = i.to(dtype=torch.float32, device=self.device)
            inputs_.append(i)
        # gradcheck with float32 requires higher atol and epsilon
        assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.0)

    @parameterized.expand(
        [
            (rnnt_utils.get_B1_T10_U3_D4_data,),
            (rnnt_utils.get_B2_T4_U3_D3_data,),
            (rnnt_utils.get_B1_T2_U3_D5_data,),
        ]
    )
    def test_rnnt_loss(self, data_func):
        def get_data(data_func, device):
            data = data_func()
            if type(data) == tuple:
                data = data[0]
            return data

        data = get_data(data_func, self.device)
        inputs = (
            data["logits"].to(torch.float32),
            data["targets"],
            data["logit_lengths"],
            data["target_lengths"],
        )
        loss = T.RNNTLoss(blank=data["blank"])

        self.assert_grad(loss, inputs)