File: librosa_compatibility_test_impl.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (158 lines) | stat: -rw-r--r-- 6,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import unittest

import torch
import torchaudio.transforms as T
from parameterized import param, parameterized
from torchaudio._internal.module_utils import is_module_available
from torchaudio_unittest.common_utils import get_sinusoid, get_spectrogram, get_whitenoise, nested_params, TestBaseMixin

LIBROSA_AVAILABLE = is_module_available("librosa")

if LIBROSA_AVAILABLE:
    import librosa


@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
class TransformsTestBase(TestBaseMixin):
    @parameterized.expand(
        [
            param(n_fft=400, hop_length=200, power=2.0),
            param(n_fft=600, hop_length=100, power=2.0),
            param(n_fft=400, hop_length=200, power=3.0),
            param(n_fft=200, hop_length=50, power=2.0),
        ]
    )
    def test_Spectrogram(self, n_fft, hop_length, power):
        sample_rate = 16000
        waveform = get_whitenoise(
            sample_rate=sample_rate,
            n_channels=1,
        ).to(self.device, self.dtype)

        expected = librosa.core.spectrum._spectrogram(
            y=waveform[0].cpu().numpy(), n_fft=n_fft, hop_length=hop_length, power=power, pad_mode="reflect"
        )[0]

        result = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, power=power,).to(self.device, self.dtype)(
            waveform
        )[0]
        self.assertEqual(result, torch.from_numpy(expected), atol=1e-4, rtol=1e-4)

    def test_Spectrogram_complex(self):
        n_fft = 400
        hop_length = 200
        sample_rate = 16000
        waveform = get_whitenoise(
            sample_rate=sample_rate,
            n_channels=1,
        ).to(self.device, self.dtype)

        expected = librosa.core.spectrum._spectrogram(
            y=waveform[0].cpu().numpy(), n_fft=n_fft, hop_length=hop_length, power=1, pad_mode="reflect"
        )[0]

        result = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, power=None, return_complex=True,).to(
            self.device, self.dtype
        )(waveform)[0]
        self.assertEqual(result.abs(), torch.from_numpy(expected), atol=1e-4, rtol=1e-4)

    @nested_params(
        [
            param(n_fft=400, hop_length=200, n_mels=64),
            param(n_fft=600, hop_length=100, n_mels=128),
            param(n_fft=200, hop_length=50, n_mels=32),
        ],
        [param(norm=norm) for norm in [None, "slaney"]],
        [param(mel_scale=mel_scale) for mel_scale in ["htk", "slaney"]],
    )
    def test_MelSpectrogram(self, n_fft, hop_length, n_mels, norm, mel_scale):
        sample_rate = 16000
        waveform = get_sinusoid(
            sample_rate=sample_rate,
            n_channels=1,
        ).to(self.device, self.dtype)

        expected = librosa.feature.melspectrogram(
            y=waveform[0].cpu().numpy(),
            sr=sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            norm=norm,
            htk=mel_scale == "htk",
            pad_mode="reflect",
        )
        result = T.MelSpectrogram(
            sample_rate=sample_rate,
            window_fn=torch.hann_window,
            hop_length=hop_length,
            n_mels=n_mels,
            n_fft=n_fft,
            norm=norm,
            mel_scale=mel_scale,
        ).to(self.device, self.dtype)(waveform)[0]
        self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5)

    def test_magnitude_to_db(self):
        spectrogram = get_spectrogram(get_whitenoise(), n_fft=400, power=2).to(self.device, self.dtype)
        result = T.AmplitudeToDB("magnitude", 80.0).to(self.device, self.dtype)(spectrogram)[0]
        expected = librosa.core.spectrum.amplitude_to_db(spectrogram[0].cpu().numpy())
        self.assertEqual(result, torch.from_numpy(expected))

    def test_power_to_db(self):
        spectrogram = get_spectrogram(get_whitenoise(), n_fft=400, power=2).to(self.device, self.dtype)
        result = T.AmplitudeToDB("power", 80.0).to(self.device, self.dtype)(spectrogram)[0]
        expected = librosa.core.spectrum.power_to_db(spectrogram[0].cpu().numpy())
        self.assertEqual(result, torch.from_numpy(expected))

    @nested_params(
        [
            param(n_fft=400, hop_length=200, n_mels=64, n_mfcc=40),
            param(n_fft=600, hop_length=100, n_mels=128, n_mfcc=20),
            param(n_fft=200, hop_length=50, n_mels=32, n_mfcc=25),
        ]
    )
    def test_mfcc(self, n_fft, hop_length, n_mels, n_mfcc):
        sample_rate = 16000
        waveform = get_whitenoise(sample_rate=sample_rate, n_channels=1).to(self.device, self.dtype)
        result = T.MFCC(
            sample_rate=sample_rate,
            n_mfcc=n_mfcc,
            norm="ortho",
            melkwargs={"hop_length": hop_length, "n_fft": n_fft, "n_mels": n_mels},
        ).to(self.device, self.dtype)(waveform)[0]

        melspec = librosa.feature.melspectrogram(
            y=waveform[0].cpu().numpy(),
            sr=sample_rate,
            n_fft=n_fft,
            win_length=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            htk=True,
            norm=None,
            pad_mode="reflect",
        )
        expected = librosa.feature.mfcc(
            S=librosa.core.spectrum.power_to_db(melspec), n_mfcc=n_mfcc, dct_type=2, norm="ortho"
        )
        self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5)

    @parameterized.expand(
        [
            param(n_fft=400, hop_length=200),
            param(n_fft=600, hop_length=100),
            param(n_fft=200, hop_length=50),
        ]
    )
    def test_spectral_centroid(self, n_fft, hop_length):
        sample_rate = 16000
        waveform = get_whitenoise(sample_rate=sample_rate, n_channels=1).to(self.device, self.dtype)

        result = T.SpectralCentroid(sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,).to(
            self.device, self.dtype
        )(waveform)
        expected = librosa.feature.spectral_centroid(
            y=waveform[0].cpu().numpy(), sr=sample_rate, n_fft=n_fft, hop_length=hop_length, pad_mode="reflect"
        )
        self.assertEqual(result, torch.from_numpy(expected), atol=5e-4, rtol=1e-5)