1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
"""Test suites for jit-ability and its numerical compatibility"""
import torch
import torchaudio.transforms as T
from parameterized import parameterized
from torchaudio_unittest import common_utils
from torchaudio_unittest.common_utils import skipIfRocm, TestBaseMixin, torch_script
class Transforms(TestBaseMixin):
"""Implements test for Transforms that are performed for different devices"""
def _assert_consistency(self, transform, tensor, *args):
tensor = tensor.to(device=self.device, dtype=self.dtype)
transform = transform.to(device=self.device, dtype=self.dtype)
ts_transform = torch_script(transform)
output = transform(tensor, *args)
ts_output = ts_transform(tensor, *args)
self.assertEqual(ts_output, output)
def _assert_consistency_complex(self, transform, tensor, *args):
assert tensor.is_complex()
tensor = tensor.to(device=self.device, dtype=self.complex_dtype)
transform = transform.to(device=self.device, dtype=self.dtype)
ts_transform = torch_script(transform)
output = transform(tensor, *args)
ts_output = ts_transform(tensor, *args)
self.assertEqual(ts_output, output)
def test_Spectrogram(self):
tensor = torch.rand((1, 1000))
self._assert_consistency(T.Spectrogram(), tensor)
def test_Spectrogram_return_complex(self):
tensor = torch.rand((1, 1000))
self._assert_consistency(T.Spectrogram(power=None, return_complex=True), tensor)
def test_InverseSpectrogram(self):
tensor = common_utils.get_whitenoise(sample_rate=8000)
spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
self._assert_consistency_complex(T.InverseSpectrogram(n_fft=400, hop_length=100), spectrogram)
@skipIfRocm
def test_GriffinLim(self):
tensor = torch.rand((1, 201, 6))
self._assert_consistency(T.GriffinLim(length=1000, rand_init=False), tensor)
def test_AmplitudeToDB(self):
spec = torch.rand((6, 201))
self._assert_consistency(T.AmplitudeToDB(), spec)
def test_MelScale(self):
spec_f = torch.rand((1, 201, 6))
self._assert_consistency(T.MelScale(n_stft=201), spec_f)
def test_MelSpectrogram(self):
tensor = torch.rand((1, 1000))
self._assert_consistency(T.MelSpectrogram(), tensor)
def test_MFCC(self):
tensor = torch.rand((1, 1000))
self._assert_consistency(T.MFCC(), tensor)
def test_LFCC(self):
tensor = torch.rand((1, 1000))
self._assert_consistency(T.LFCC(), tensor)
def test_Resample(self):
sr1, sr2 = 16000, 8000
tensor = common_utils.get_whitenoise(sample_rate=sr1)
self._assert_consistency(T.Resample(sr1, sr2), tensor)
def test_MuLawEncoding(self):
tensor = common_utils.get_whitenoise()
self._assert_consistency(T.MuLawEncoding(), tensor)
def test_MuLawDecoding(self):
tensor = torch.rand((1, 10))
self._assert_consistency(T.MuLawDecoding(), tensor)
def test_ComputeDelta(self):
tensor = torch.rand((1, 10))
self._assert_consistency(T.ComputeDeltas(), tensor)
def test_Fade(self):
waveform = common_utils.get_whitenoise()
fade_in_len = 3000
fade_out_len = 3000
self._assert_consistency(T.Fade(fade_in_len, fade_out_len), waveform)
def test_FrequencyMasking(self):
tensor = torch.rand((10, 2, 50, 10, 2))
self._assert_consistency(T.FrequencyMasking(freq_mask_param=60, iid_masks=False), tensor)
def test_TimeMasking(self):
tensor = torch.rand((10, 2, 50, 10, 2))
self._assert_consistency(T.TimeMasking(time_mask_param=30, iid_masks=False), tensor)
def test_Vol(self):
waveform = common_utils.get_whitenoise()
self._assert_consistency(T.Vol(1.1), waveform)
def test_SlidingWindowCmn(self):
tensor = torch.rand((1000, 10))
self._assert_consistency(T.SlidingWindowCmn(), tensor)
def test_Vad(self):
filepath = common_utils.get_asset_path("vad-go-mono-32000.wav")
waveform, sample_rate = common_utils.load_wav(filepath)
self._assert_consistency(T.Vad(sample_rate=sample_rate), waveform)
def test_SpectralCentroid(self):
sample_rate = 44100
waveform = common_utils.get_whitenoise(sample_rate=sample_rate)
self._assert_consistency(T.SpectralCentroid(sample_rate=sample_rate), waveform)
def test_TimeStretch(self):
n_fft = 1025
n_freq = n_fft // 2 + 1
hop_length = 512
fixed_rate = 1.3
tensor = torch.rand((10, 2, n_freq, 10), dtype=torch.cfloat)
batch = 10
num_channels = 2
waveform = common_utils.get_whitenoise(sample_rate=8000, n_channels=batch * num_channels)
tensor = common_utils.get_spectrogram(waveform, n_fft=n_fft)
tensor = tensor.reshape(batch, num_channels, n_freq, -1)
self._assert_consistency_complex(
T.TimeStretch(n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate),
tensor,
)
def test_PitchShift(self):
sample_rate = 8000
n_steps = 4
waveform = common_utils.get_whitenoise(sample_rate=sample_rate)
pitch_shift = T.PitchShift(sample_rate=sample_rate, n_steps=n_steps)
# dry-run for initializing parameters
pitch_shift(waveform)
self._assert_consistency(pitch_shift, waveform)
def test_PSD(self):
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4)
spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
spectrogram = spectrogram.to(self.device)
self._assert_consistency_complex(T.PSD(), spectrogram)
def test_PSD_with_mask(self):
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4)
spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
spectrogram = spectrogram.to(self.device)
mask = torch.rand(spectrogram.shape[-2:], device=self.device)
self._assert_consistency_complex(T.PSD(), spectrogram, mask)
@parameterized.expand(
[
["ref_channel", True],
["stv_evd", True],
["stv_power", True],
["ref_channel", False],
["stv_evd", False],
["stv_power", False],
]
)
def test_MVDR(self, solution, online):
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4)
spectrogram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
mask_s = torch.rand(spectrogram.shape[-2:], device=self.device)
mask_n = torch.rand(spectrogram.shape[-2:], device=self.device)
self._assert_consistency_complex(T.MVDR(solution=solution, online=online), spectrogram, mask_s, mask_n)
def test_rtf_mvdr(self):
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4)
specgram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
channel, freq, _ = specgram.shape
rtf = torch.rand(freq, channel, dtype=self.complex_dtype, device=self.device)
psd_n = torch.rand(freq, channel, channel, dtype=self.complex_dtype, device=self.device)
reference_channel = 0
self._assert_consistency_complex(T.RTFMVDR(), specgram, rtf, psd_n, reference_channel)
def test_souden_mvdr(self):
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=4)
specgram = common_utils.get_spectrogram(tensor, n_fft=400, hop_length=100)
channel, freq, _ = specgram.shape
psd_s = torch.rand(freq, channel, channel, dtype=self.complex_dtype, device=self.device)
psd_n = torch.rand(freq, channel, channel, dtype=self.complex_dtype, device=self.device)
reference_channel = 0
self._assert_consistency_complex(T.SoudenMVDR(), specgram, psd_s, psd_n, reference_channel)
@common_utils.nested_params(
["Convolve", "FFTConvolve"],
["full", "valid", "same"],
)
def test_convolve(self, cls, mode):
leading_dims = (2, 3, 2)
L_x, L_y = 32, 55
x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device)
y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device)
convolve = getattr(T, cls)(mode=mode).to(device=self.device, dtype=self.dtype)
output = convolve(x, y)
ts_output = torch_script(convolve)(x, y)
self.assertEqual(ts_output, output)
@common_utils.nested_params([True, False])
def test_speed(self, use_lengths):
leading_dims = (3, 2)
time = 200
waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device)
else:
lengths = None
speed = T.Speed(1000, 0.9).to(self.device, self.dtype)
output = speed(waveform, lengths)
ts_output = torch_script(speed)(waveform, lengths)
self.assertEqual(ts_output, output)
@common_utils.nested_params([True, False])
def test_speed_perturbation(self, use_lengths):
leading_dims = (3, 2)
time = 200
waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device)
else:
lengths = None
speed = T.SpeedPerturbation(1000, [0.9]).to(self.device, self.dtype)
output = speed(waveform, lengths)
ts_output = torch_script(speed)(waveform, lengths)
self.assertEqual(ts_output, output)
@common_utils.nested_params([True, False])
def test_add_noise(self, use_lengths):
leading_dims = (2, 3)
L = 31
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True)
else:
lengths = None
snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10
add_noise = T.AddNoise().to(self.device, self.dtype)
output = add_noise(waveform, noise, snr, lengths)
ts_output = torch_script(add_noise)(waveform, noise, snr, lengths)
self.assertEqual(ts_output, output)
def test_preemphasis(self):
waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device)
preemphasis = T.Preemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device)
output = preemphasis(waveform)
ts_output = torch_script(preemphasis)(waveform)
self.assertEqual(ts_output, output)
def test_deemphasis(self):
waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device)
deemphasis = T.Deemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device)
output = deemphasis(waveform)
ts_output = torch_script(deemphasis)(waveform)
self.assertEqual(ts_output, output)
class TransformsFloat32Only(TestBaseMixin):
def test_rnnt_loss(self):
logits = torch.tensor(
[
[
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]],
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1]],
]
]
)
tensor = logits.to(device=self.device, dtype=torch.float32)
targets = torch.tensor([[1, 2]], device=tensor.device, dtype=torch.int32)
logit_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
target_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
self._assert_consistency(T.RNNTLoss(), logits, targets, logit_lengths, target_lengths)
|