1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
import math
import random
from unittest.mock import patch
import numpy as np
import torch
import torchaudio.transforms as T
from parameterized import param, parameterized
from scipy import signal
from torchaudio.functional import lfilter, preemphasis
from torchaudio.functional.functional import _get_sinc_resample_kernel
from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, TestBaseMixin
from torchaudio_unittest.common_utils.psd_utils import psd_numpy
def _get_ratio(mat):
return (mat.sum() / mat.numel()).item()
class TransformsTestBase(TestBaseMixin):
def test_inverse_melscale(self):
"""Gauge the quality of InverseMelScale transform.
As InverseMelScale is currently implemented with
sub-optimal solution (compute matrix inverse + relu),
it is not practically possible to assert the difference between
the estimated spectrogram and the original spectrogram as a whole.
Estimated spectrogram has very huge descrepency locally.
Thus in this test we gauge what percentage of elements are bellow
certain tolerance.
At the moment, the quality of estimated spectrogram is not good.
When implementation is changed in a way it makes the quality even worse,
this test will fail.
"""
n_fft = 400
power = 1
n_mels = 64
sample_rate = 8000
n_stft = n_fft // 2 + 1
# Generate reference spectrogram and input mel-scaled spectrogram
expected = get_spectrogram(
get_whitenoise(sample_rate=sample_rate, duration=1, n_channels=2), n_fft=n_fft, power=power
).to(self.device, self.dtype)
input = T.MelScale(n_mels=n_mels, sample_rate=sample_rate, n_stft=n_stft).to(self.device, self.dtype)(expected)
# Run transform
transform = T.InverseMelScale(n_stft, n_mels=n_mels, sample_rate=sample_rate).to(self.device, self.dtype)
result = transform(input)
# Compare
epsilon = 1e-60
relative_diff = torch.abs((result - expected) / (expected + epsilon))
for tol in [1e-1, 1e-3, 1e-5, 1e-10]:
print(f"Ratio of relative diff smaller than {tol:e} is " f"{_get_ratio(relative_diff < tol)}")
assert _get_ratio(relative_diff < 1e-1) > 0.2
assert _get_ratio(relative_diff < 1e-3) > 5e-3
assert _get_ratio(relative_diff < 1e-5) > 1e-5
@nested_params(
["sinc_interp_hann", "sinc_interp_kaiser"],
[16000, 44100],
)
def test_resample_identity(self, resampling_method, sample_rate):
"""When sampling rate is not changed, the transform returns an identical Tensor"""
waveform = get_whitenoise(sample_rate=sample_rate, duration=1)
resampler = T.Resample(sample_rate, sample_rate, resampling_method)
resampled = resampler(waveform)
self.assertEqual(waveform, resampled)
@nested_params(
["sinc_interp_hann", "sinc_interp_kaiser"],
[None, torch.float64],
)
def test_resample_cache_dtype(self, resampling_method, dtype):
"""Providing dtype changes the kernel cache dtype"""
transform = T.Resample(16000, 44100, resampling_method, dtype=dtype)
assert transform.kernel.dtype == dtype if dtype is not None else torch.float32
@parameterized.expand(
[
param(n_fft=300, center=True, onesided=True),
param(n_fft=400, center=True, onesided=False),
param(n_fft=400, center=True, onesided=False),
param(n_fft=300, center=True, onesided=False),
param(n_fft=400, hop_length=10),
param(n_fft=800, win_length=400, hop_length=20),
param(n_fft=800, win_length=400, hop_length=20, normalized=True),
param(),
param(n_fft=400, pad=32),
# These tests do not work - cause runtime error
# See https://github.com/pytorch/pytorch/issues/62323
# param(n_fft=400, center=False, onesided=True),
# param(n_fft=400, center=False, onesided=False),
]
)
def test_roundtrip_spectrogram(self, **args):
"""Test the spectrogram + inverse spectrogram results in approximate identity."""
waveform = get_whitenoise(sample_rate=8000, duration=0.5, dtype=self.dtype)
s = T.Spectrogram(**args, power=None)
inv_s = T.InverseSpectrogram(**args)
transformed = s.forward(waveform)
restored = inv_s.forward(transformed, length=waveform.shape[-1])
self.assertEqual(waveform, restored, atol=1e-6, rtol=1e-6)
@parameterized.expand(
[
param(0.5, 1, True, False),
param(0.5, 1, None, False),
param(1, 4, True, True),
param(1, 6, None, True),
]
)
def test_psd(self, duration, channel, mask, multi_mask):
"""Providing dtype changes the kernel cache dtype"""
transform = T.PSD(multi_mask)
waveform = get_whitenoise(sample_rate=8000, duration=duration, n_channels=channel)
spectrogram = get_spectrogram(waveform, n_fft=400) # (channel, freq, time)
spectrogram = spectrogram.to(torch.cdouble)
if mask is not None:
if multi_mask:
mask = torch.rand(spectrogram.shape[-3:])
else:
mask = torch.rand(spectrogram.shape[-2:])
psd_np = psd_numpy(spectrogram.detach().numpy(), mask.detach().numpy(), multi_mask)
else:
psd_np = psd_numpy(spectrogram.detach().numpy(), mask, multi_mask)
psd = transform(spectrogram, mask)
self.assertEqual(psd, psd_np, atol=1e-5, rtol=1e-5)
@parameterized.expand(
[
param(torch.complex64),
param(torch.complex128),
]
)
def test_mvdr(self, dtype):
"""Make sure the output dtype is the same as the input dtype"""
transform = T.MVDR()
waveform = get_whitenoise(sample_rate=8000, duration=0.5, n_channels=3)
specgram = get_spectrogram(waveform, n_fft=400) # (channel, freq, time)
specgram = specgram.to(dtype)
mask_s = torch.rand(specgram.shape[-2:])
mask_n = torch.rand(specgram.shape[-2:])
specgram_enhanced = transform(specgram, mask_s, mask_n)
assert specgram_enhanced.dtype == dtype
def test_pitch_shift_resample_kernel(self):
"""The resampling kernel in PitchShift is identical to what helper function generates.
There should be no numerical difference caused by dtype conversion.
"""
sample_rate = 8000
trans = T.PitchShift(sample_rate=sample_rate, n_steps=4)
trans.to(self.dtype).to(self.device)
# dry run to initialize the kernel
trans(torch.randn(2, 8000, dtype=self.dtype, device=self.device))
expected, _ = _get_sinc_resample_kernel(
trans.orig_freq, sample_rate, trans.gcd, device=self.device, dtype=self.dtype
)
self.assertEqual(trans.kernel, expected)
@nested_params(
[(10, 4), (4, 3, 1, 2), (2,), ()],
[(100, 43), (21, 45)],
["full", "valid", "same"],
)
def test_convolve(self, leading_dims, lengths, mode):
"""Check that Convolve returns values identical to those that SciPy produces."""
L_x, L_y = lengths
x = torch.rand(*(leading_dims + (L_x,)), dtype=self.dtype, device=self.device)
y = torch.rand(*(leading_dims + (L_y,)), dtype=self.dtype, device=self.device)
convolve = T.Convolve(mode=mode).to(self.device)
actual = convolve(x, y)
num_signals = torch.tensor(leading_dims).prod() if leading_dims else 1
x_reshaped = x.reshape((num_signals, L_x))
y_reshaped = y.reshape((num_signals, L_y))
expected = [
signal.convolve(x_reshaped[i].detach().cpu().numpy(), y_reshaped[i].detach().cpu().numpy(), mode=mode)
for i in range(num_signals)
]
expected = torch.tensor(np.array(expected))
expected = expected.reshape(leading_dims + (-1,))
self.assertEqual(expected, actual)
@nested_params(
[(10, 4), (4, 3, 1, 2), (2,), ()],
[(100, 43), (21, 45)],
["full", "valid", "same"],
)
def test_fftconvolve(self, leading_dims, lengths, mode):
"""Check that FFTConvolve returns values identical to those that SciPy produces."""
L_x, L_y = lengths
x = torch.rand(*(leading_dims + (L_x,)), dtype=self.dtype, device=self.device)
y = torch.rand(*(leading_dims + (L_y,)), dtype=self.dtype, device=self.device)
convolve = T.FFTConvolve(mode=mode).to(self.device)
actual = convolve(x, y)
expected = signal.fftconvolve(x.detach().cpu().numpy(), y.detach().cpu().numpy(), axes=-1, mode=mode)
expected = torch.tensor(expected)
self.assertEqual(expected, actual)
def test_speed_identity(self):
"""speed of 1.0 does not alter input waveform and length"""
leading_dims = (5, 4, 2)
time = 1000
waveform = torch.rand(*leading_dims, time)
lengths = torch.randint(1, 1000, leading_dims)
speed = T.Speed(1000, 1.0)
actual_waveform, actual_lengths = speed(waveform, lengths)
self.assertEqual(waveform, actual_waveform)
self.assertEqual(lengths, actual_lengths)
@nested_params([0.8, 1.1, 1.2], [True, False])
def test_speed_accuracy(self, factor, use_lengths):
"""sinusoidal waveform is properly compressed by factor"""
n_to_trim = 20
sample_rate = 1000
freq = 2
times = torch.arange(0, 5, 1.0 / sample_rate)
waveform = torch.cos(2 * math.pi * freq * times).unsqueeze(0).to(self.device, self.dtype)
if use_lengths:
lengths = torch.tensor([waveform.size(1)])
else:
lengths = None
speed = T.Speed(sample_rate, factor).to(self.device, self.dtype)
output, output_lengths = speed(waveform, lengths)
if use_lengths:
self.assertEqual(output.size(1), output_lengths[0])
else:
self.assertEqual(None, output_lengths)
new_times = torch.arange(0, 5 / factor, 1.0 / sample_rate)
expected_waveform = torch.cos(2 * math.pi * freq * factor * new_times).unsqueeze(0).to(self.device, self.dtype)
self.assertEqual(
expected_waveform[..., n_to_trim:-n_to_trim], output[..., n_to_trim:-n_to_trim], atol=1e-1, rtol=1e-4
)
def test_speed_perturbation(self):
"""sinusoidal waveform is properly compressed by sampled factors"""
n_to_trim = 20
sample_rate = 1000
freq = 2
times = torch.arange(0, 5, 1.0 / sample_rate)
waveform = torch.cos(2 * math.pi * freq * times).unsqueeze(0).to(self.device, self.dtype)
lengths = torch.tensor([waveform.size(1)])
factors = [0.8, 1.1, 1.0]
indices = random.choices(range(len(factors)), k=5)
speed_perturb = T.SpeedPerturbation(sample_rate, factors).to(self.device, self.dtype)
with patch("torch.randint", side_effect=indices):
for idx in indices:
output, output_lengths = speed_perturb(waveform, lengths)
self.assertEqual(output.size(1), output_lengths[0])
factor = factors[idx]
new_times = torch.arange(0, 5 / factor, 1.0 / sample_rate)
expected_waveform = (
torch.cos(2 * math.pi * freq * factor * new_times).unsqueeze(0).to(self.device, self.dtype)
)
self.assertEqual(
expected_waveform[..., n_to_trim:-n_to_trim],
output[..., n_to_trim:-n_to_trim],
atol=1e-1,
rtol=1e-4,
)
def test_add_noise_broadcast(self):
"""Check that AddNoise produces correct outputs when broadcasting input dimensions."""
leading_dims = (5, 2, 3)
L = 51
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device)
noise = torch.rand(5, 1, 1, L, dtype=self.dtype, device=self.device)
lengths = torch.rand(5, 1, 3, dtype=self.dtype, device=self.device)
snr = torch.rand(1, 1, 1, dtype=self.dtype, device=self.device) * 10
add_noise = T.AddNoise()
actual = add_noise(waveform, noise, snr, lengths)
noise_expanded = noise.expand(*leading_dims, L)
snr_expanded = snr.expand(*leading_dims)
lengths_expanded = lengths.expand(*leading_dims)
expected = add_noise(waveform, noise_expanded, snr_expanded, lengths_expanded)
self.assertEqual(expected, actual)
@parameterized.expand(
[((5, 2, 3), (2, 1, 1), (5, 2), (5, 2, 3)), ((2, 1), (5,), (5,), (5,)), ((3,), (5, 2, 3), (2, 1, 1), (5, 2))]
)
def test_add_noise_leading_dim_check(self, waveform_dims, noise_dims, lengths_dims, snr_dims):
"""Check that AddNoise properly rejects inputs with different leading dimension lengths."""
L = 51
waveform = torch.rand(*waveform_dims, L, dtype=self.dtype, device=self.device)
noise = torch.rand(*noise_dims, L, dtype=self.dtype, device=self.device)
lengths = torch.rand(*lengths_dims, dtype=self.dtype, device=self.device)
snr = torch.rand(*snr_dims, dtype=self.dtype, device=self.device) * 10
add_noise = T.AddNoise()
with self.assertRaisesRegex(ValueError, "Input leading dimensions"):
add_noise(waveform, noise, snr, lengths)
def test_add_noise_length_check(self):
"""Check that add_noise properly rejects inputs that have inconsistent length dimensions."""
leading_dims = (5, 2, 3)
L = 51
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device)
noise = torch.rand(*leading_dims, 50, dtype=self.dtype, device=self.device)
lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device)
snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10
add_noise = T.AddNoise()
with self.assertRaisesRegex(ValueError, "Length dimensions"):
add_noise(waveform, noise, snr, lengths)
@nested_params(
[(2, 1, 31)],
[0.97, 0.72],
)
def test_preemphasis(self, input_shape, coeff):
waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
preemphasis = T.Preemphasis(coeff=coeff).to(dtype=self.dtype, device=self.device)
actual = preemphasis(waveform)
a_coeffs = torch.tensor([1.0, 0.0], device=self.device, dtype=self.dtype)
b_coeffs = torch.tensor([1.0, -coeff], device=self.device, dtype=self.dtype)
expected = lfilter(waveform, a_coeffs=a_coeffs, b_coeffs=b_coeffs)
self.assertEqual(actual, expected)
@nested_params(
[(2, 1, 31)],
[0.97, 0.72],
)
def test_deemphasis(self, input_shape, coeff):
waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
preemphasized = preemphasis(waveform, coeff=coeff)
deemphasis = T.Deemphasis(coeff=coeff).to(dtype=self.dtype, device=self.device)
deemphasized = deemphasis(preemphasized)
self.assertEqual(deemphasized, waveform)
@nested_params(
[(100, 200), (5, 10, 20), (50, 50, 100, 200)],
)
def test_time_masking(self, input_shape):
transform = T.TimeMasking(time_mask_param=5)
# Genearte a specgram tensor containing 1's only, for the ease of testing.
specgram = torch.ones(*input_shape)
masked = transform(specgram)
dim = len(input_shape)
# Across the axis (dim-1) where we apply masking,
# the mean tensor should contain equal elements,
# and the value should be between 0 and 1.
m_masked = torch.mean(masked, dim - 1)
self.assertEqual(torch.var(m_masked), 0)
self.assertTrue(torch.mean(m_masked) > 0)
self.assertTrue(torch.mean(m_masked) < 1)
# Across all other dimensions, the mean tensor should contain at least
# one zero element, and all non-zero elements should be 1.
for axis in range(dim - 1):
unmasked_axis_mean = torch.mean(masked, axis)
self.assertTrue(0 in unmasked_axis_mean)
self.assertFalse(False in torch.eq(unmasked_axis_mean[unmasked_axis_mean != 0], 1))
@nested_params(
[(100, 200), (5, 10, 20), (50, 50, 100, 200)],
)
def test_freq_masking(self, input_shape):
transform = T.FrequencyMasking(freq_mask_param=5)
# Genearte a specgram tensor containing 1's only, for the ease of testing.
specgram = torch.ones(*input_shape)
masked = transform(specgram)
dim = len(input_shape)
# Across the axis (dim-2) where we apply masking,
# the mean tensor should contain equal elements,
# and the value should be between 0 and 1.
m_masked = torch.mean(masked, dim - 2)
self.assertEqual(torch.var(m_masked), 0)
self.assertTrue(torch.mean(m_masked) > 0)
self.assertTrue(torch.mean(m_masked) < 1)
# Across all other dimensions, the mean tensor should contain at least
# one zero element, and all non-zero elements should be 1.
for axis in range(dim):
if axis != dim - 2:
unmasked_axis_mean = torch.mean(masked, axis)
self.assertTrue(0 in unmasked_axis_mean)
self.assertFalse(False in torch.eq(unmasked_axis_mean[unmasked_axis_mean != 0], 1))
@parameterized.expand(
[
param(10, 20, 10, 20, False),
param(0, 20, 10, 20, False),
param(10, 20, 0, 20, False),
param(10, 20, 10, 20, True),
param(0, 20, 10, 20, True),
param(10, 20, 0, 20, True),
]
)
def test_specaugment(self, n_time_masks, time_mask_param, n_freq_masks, freq_mask_param, iid_masks):
"""Make sure SpecAug masking works as expected"""
spec = torch.ones(2, 200, 200)
transform = T.SpecAugment(
n_time_masks=n_time_masks,
time_mask_param=time_mask_param,
n_freq_masks=n_freq_masks,
freq_mask_param=freq_mask_param,
iid_masks=iid_masks,
zero_masking=True,
)
spec_masked = transform(spec)
f_axis_mean = torch.mean(spec_masked, 1)
t_axis_mean = torch.mean(spec_masked, 2)
if n_time_masks == 0 and n_freq_masks == 0:
self.assertEqual(spec, spec_masked)
elif n_time_masks > 0 and n_freq_masks > 0:
# Across both time and frequency dimensions, the mean tensor should contain
# at least one zero element, and all non-zero elements should be less than 1.
self.assertTrue(0 in t_axis_mean)
self.assertFalse(False in torch.lt(t_axis_mean[t_axis_mean != 0], 1))
self.assertTrue(0 in f_axis_mean)
self.assertFalse(False in torch.lt(f_axis_mean[f_axis_mean != 0], 1))
elif n_freq_masks > 0:
# Across the frequency axis where we apply masking,
# the mean tensor should contain equal elements,
# and the value should be between 0 and 1.
self.assertFalse(False in torch.eq(f_axis_mean[0], f_axis_mean[0][0]))
self.assertFalse(False in torch.eq(f_axis_mean[1], f_axis_mean[1][0]))
self.assertTrue(f_axis_mean[0][0] < 1)
self.assertTrue(f_axis_mean[1][0] > 0)
# Across the time axis where we don't mask, the mean tensor should contain at
# least one zero element, and all non-zero elements should be 1.
self.assertTrue(0 in t_axis_mean)
self.assertFalse(False in torch.eq(t_axis_mean[t_axis_mean != 0], 1))
else:
# Across the time axis where we apply masking,
# the mean tensor should contain equal elements,
# and the value should be between 0 and 1.
self.assertFalse(False in torch.eq(t_axis_mean[0], t_axis_mean[0][0]))
self.assertFalse(False in torch.eq(t_axis_mean[1], t_axis_mean[1][0]))
self.assertTrue(t_axis_mean[0][0] < 1)
self.assertTrue(t_axis_mean[1][0] > 0)
# Across the frequency axis where we don't mask, the mean tensor should contain at
# least one zero element, and all non-zero elements should be 1.
self.assertTrue(0 in f_axis_mean)
self.assertFalse(False in torch.eq(f_axis_mean[f_axis_mean != 0], 1))
# Test if iid_masks gives different masking results for different spectrograms across the 0th dimension.
diff = torch.linalg.vector_norm(spec_masked[0] - spec_masked[1]).item()
print(diff)
if iid_masks is True:
self.assertTrue(diff > 0)
else:
self.assertTrue(diff == 0)
@parameterized.expand(
[
((32000,), (0,), 16000),
((1, 32000), (1, 0), 32000),
((2, 44100), (2, 0), 32000),
((2, 2, 44100), (2, 2, 0), 32000),
]
)
def test_vad_on_zero_audio(self, input_shape, output_shape, sample_rate: int):
"""VAD should return zero when input is zero Tensor"""
inpt = torch.zeros(input_shape, dtype=self.dtype, device=self.device)
expected_output = torch.zeros(output_shape, dtype=self.dtype, device=self.device)
result = T.Vad(sample_rate)(inpt)
self.assertEqual(result, expected_output)
|