1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
#!/usr/bin/env python3
"""Convert a Wav2Vec2/HuBERT model published by fairseq into torchaudio format
Examples
```
python convert_fairseq_models.py \
--input-file hubert_base_ls960.pt \
--output-file hubert_fairseq_base_ls960.pth
python convert_fairseq_models.py \
--input-file hubert_large_ll60k.pt \
--output-file hubert_fairseq_large_ll60k.pth
python convert_fairseq_models.py \
--input-file hubert_large_ll60k_finetune_ls960.pt \
--output-file hubert_fairseq_large_ll60k_asr_ls960.pth
python convert_fairseq_models.py \
--input-file hubert_xtralarge_ll60k.pt \
--output-file hubert_fairseq_xlarge_ll60k.pth
python convert_fairseq_models.py \
--input-file hubert_xtralarge_ll60k_finetune_ls960.pt \
--output-file hubert_fairseq_xlarge_ll60k_asr_ls960.pth
"""
import argparse
# Note: Avoiding the import of torch and fairseq on global scope as they are slow
def _parse_args():
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--input-file", required=True, help="Input model file.")
parser.add_argument("--output-file", required=False, help="Output model file.")
parser.add_argument(
"--dict-dir",
help=(
"Directory where letter vocabulary file, `dict.ltr.txt`, is found. "
"Required when loading wav2vec2 model. "
"https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt"
),
)
return parser.parse_args()
def _load_model(input_file, dict_dir):
import fairseq
overrides = {} if dict_dir is None else {"data": dict_dir}
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[input_file],
arg_overrides=overrides,
)
return models[0]
def _import_model(model):
from torchaudio.models.wav2vec2.utils import import_fairseq_model
if model.__class__.__name__ in ["HubertCtc", "Wav2VecCtc"]:
model = model.w2v_encoder
model = import_fairseq_model(model)
return model
def _main(args):
import torch
model = _load_model(args.input_file, args.dict_dir)
model = _import_model(model)
torch.save(model.state_dict(), args.output_file)
if __name__ == "__main__":
_main(_parse_args())
|