File: rw_cuda.cu

package info (click to toggle)
pytorch-cluster 1.6.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 648 kB
  • sloc: cpp: 2,076; python: 1,081; sh: 53; makefile: 8
file content (152 lines) | stat: -rw-r--r-- 4,753 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include "rw_cuda.h"

#include <ATen/cuda/CUDAContext.h>
#include <curand.h>
#include <curand_kernel.h>

#include "utils.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

__global__ void uniform_sampling_kernel(const int64_t *rowptr,
                                        const int64_t *col,
                                        const int64_t *start, const float *rand,
                                        int64_t *n_out, int64_t *e_out,
                                        const int64_t walk_length,
                                        const int64_t numel) {

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (thread_idx < numel) {
    int64_t n_cur = start[thread_idx], e_cur, row_start, row_end, rnd;

    n_out[thread_idx] = n_cur;

    for (int64_t l = 0; l < walk_length; l++) {
      row_start = rowptr[n_cur], row_end = rowptr[n_cur + 1];
      if (row_end - row_start == 0) {
        e_cur = -1;
      } else {
        rnd = int64_t(rand[l * numel + thread_idx] * (row_end - row_start));
        e_cur = row_start + rnd;
        n_cur = col[e_cur];
      }
      n_out[(l + 1) * numel + thread_idx] = n_cur;
      e_out[l * numel + thread_idx] = e_cur;
    }
  }
}

__global__ void
rejection_sampling_kernel(unsigned int seed, const int64_t *rowptr,
                          const int64_t *col, const int64_t *start,
                          int64_t *n_out, int64_t *e_out,
                          const int64_t walk_length, const int64_t numel,
                          const double p, const double q) {

  curandState_t state;
  curand_init(seed, 0, 0, &state);

  double max_prob = fmax(fmax(1. / p, 1.), 1. / q);
  double prob_0 = 1. / p / max_prob;
  double prob_1 = 1. / max_prob;
  double prob_2 = 1. / q / max_prob;

  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (thread_idx < numel) {
    int64_t t = start[thread_idx], v, x, e_cur, row_start, row_end;

    n_out[thread_idx] = t;

    row_start = rowptr[t], row_end = rowptr[t + 1];
    if (row_end - row_start == 0) {
      e_cur = -1;
      v = t;
    } else {
      e_cur = row_start + (curand(&state) % (row_end - row_start));
      v = col[e_cur];
    }

    n_out[numel + thread_idx] = v;
    e_out[thread_idx] = e_cur;

    for (int64_t l = 1; l < walk_length; l++) {
      row_start = rowptr[v], row_end = rowptr[v + 1];

      if (row_end - row_start == 0) {
        e_cur = -1;
        x = v;
      } else if (row_end - row_start == 1) {
        e_cur = row_start;
        x = col[e_cur];
      } else {
        while (true) {
          e_cur = row_start + (curand(&state) % (row_end - row_start));
          x = col[e_cur];

          double r = curand_uniform(&state); // (0, 1]

          if (x == t && r < prob_0)
            break;

          bool is_neighbor = false;
          row_start = rowptr[x], row_end = rowptr[x + 1];
          for (int64_t i = row_start; i < row_end; i++) {
            if (col[i] == t) {
              is_neighbor = true;
              break;
            }
          }

          if (is_neighbor && r < prob_1)
            break;
          else if (r < prob_2)
            break;
        }
      }

      n_out[(l + 1) * numel + thread_idx] = x;
      e_out[l * numel + thread_idx] = e_cur;
      t = v;
      v = x;
    }
  }
}

std::tuple<torch::Tensor, torch::Tensor>
random_walk_cuda(torch::Tensor rowptr, torch::Tensor col, torch::Tensor start,
                 int64_t walk_length, double p, double q) {
  CHECK_CUDA(rowptr);
  CHECK_CUDA(col);
  CHECK_CUDA(start);
  cudaSetDevice(rowptr.get_device());

  CHECK_INPUT(rowptr.dim() == 1);
  CHECK_INPUT(col.dim() == 1);
  CHECK_INPUT(start.dim() == 1);

  auto n_out = torch::empty({walk_length + 1, start.size(0)}, start.options());
  auto e_out = torch::empty({walk_length, start.size(0)}, start.options());

  auto stream = at::cuda::getCurrentCUDAStream();

  if (p == 1. && q == 1.) {
    auto rand = torch::rand({start.size(0), walk_length},
                            start.options().dtype(torch::kFloat));

    uniform_sampling_kernel<<<BLOCKS(start.numel()), THREADS, 0, stream>>>(
        rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
        start.data_ptr<int64_t>(), rand.data_ptr<float>(),
        n_out.data_ptr<int64_t>(), e_out.data_ptr<int64_t>(), walk_length,
        start.numel());
  } else {
    rejection_sampling_kernel<<<BLOCKS(start.numel()), THREADS, 0, stream>>>(
        time(NULL), rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
        start.data_ptr<int64_t>(), n_out.data_ptr<int64_t>(),
        e_out.data_ptr<int64_t>(), walk_length, start.numel(), p, q);
  }

  return std::make_tuple(n_out.t().contiguous(), e_out.t().contiguous());
}