File: knn.cpp

package info (click to toggle)
pytorch-cluster 1.6.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 648 kB
  • sloc: cpp: 2,076; python: 1,081; sh: 53; makefile: 8
file content (40 lines) | stat: -rw-r--r-- 973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#ifdef WITH_PYTHON
#include <Python.h>
#endif
#include <torch/script.h>

#include "cpu/knn_cpu.h"

#ifdef WITH_CUDA
#include "cuda/knn_cuda.h"
#endif

#ifdef _WIN32
#ifdef WITH_PYTHON
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__knn_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__knn_cpu(void) { return NULL; }
#endif
#endif
#endif

CLUSTER_API torch::Tensor knn(torch::Tensor x, torch::Tensor y,
                  torch::optional<torch::Tensor> ptr_x,
                  torch::optional<torch::Tensor> ptr_y, int64_t k, bool cosine,
                  int64_t num_workers) {
  if (x.device().is_cuda()) {
#ifdef WITH_CUDA
    return knn_cuda(x, y, ptr_x, ptr_y, k, cosine);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    if (cosine)
      AT_ERROR("`cosine` argument not supported on CPU");
    return knn_cpu(x, y, ptr_x, ptr_y, k, num_workers);
  }
}

static auto registry =
    torch::RegisterOperators().op("torch_cluster::knn", &knn);