1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
from itertools import product
import pytest
import torch
from torch_cluster import nearest
from torch_cluster.testing import devices, grad_dtypes, tensor
@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_nearest(dtype, device):
x = tensor([
[-1, -1],
[-1, +1],
[+1, +1],
[+1, -1],
[-2, -2],
[-2, +2],
[+2, +2],
[+2, -2],
], dtype, device)
y = tensor([
[-1, 0],
[+1, 0],
[-2, 0],
[+2, 0],
], dtype, device)
batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
batch_y = tensor([0, 0, 1, 1], torch.long, device)
out = nearest(x, y, batch_x, batch_y)
assert out.tolist() == [0, 0, 1, 1, 2, 2, 3, 3]
out = nearest(x, y)
assert out.tolist() == [0, 0, 1, 1, 2, 2, 3, 3]
# Invalid input: instance 1 only in batch_x
batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
batch_y = tensor([0, 0, 0, 0], torch.long, device)
with pytest.raises(ValueError):
nearest(x, y, batch_x, batch_y)
# Invalid input: instance 1 only in batch_x (implicitly as batch_y=None)
with pytest.raises(ValueError):
nearest(x, y, batch_x, batch_y=None)
# Invalid input: instance 2 only in batch_x
# (i.e.instance in the middle missing)
batch_x = tensor([0, 0, 1, 1, 2, 2, 3, 3], torch.long, device)
batch_y = tensor([0, 1, 3, 3], torch.long, device)
with pytest.raises(ValueError):
nearest(x, y, batch_x, batch_y)
# Invalid input: batch_x unsorted
batch_x = tensor([0, 0, 1, 0, 0, 0, 0], torch.long, device)
batch_y = tensor([0, 0, 1, 1], torch.long, device)
with pytest.raises(ValueError):
nearest(x, y, batch_x, batch_y)
# Invalid input: batch_y unsorted
batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
batch_y = tensor([0, 0, 1, 0], torch.long, device)
with pytest.raises(ValueError):
nearest(x, y, batch_x, batch_y)
|