1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
from itertools import product
import pytest
import scipy.spatial
import torch
from torch_cluster import radius, radius_graph
from torch_cluster.testing import devices, grad_dtypes, tensor
def to_set(edge_index):
return set([(i, j) for i, j in edge_index.t().tolist()])
@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_radius(dtype, device):
x = tensor([
[-1, -1],
[-1, +1],
[+1, +1],
[+1, -1],
[-1, -1],
[-1, +1],
[+1, +1],
[+1, -1],
], dtype, device)
y = tensor([
[0, 0],
[0, 1],
], dtype, device)
batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
batch_y = tensor([0, 1], torch.long, device)
edge_index = radius(x, y, 2, max_num_neighbors=4)
assert to_set(edge_index) == set([(0, 0), (0, 1), (0, 2), (0, 3), (1, 1),
(1, 2), (1, 5), (1, 6)])
jit = torch.jit.script(radius)
edge_index = jit(x, y, 2, max_num_neighbors=4)
assert to_set(edge_index) == set([(0, 0), (0, 1), (0, 2), (0, 3), (1, 1),
(1, 2), (1, 5), (1, 6)])
edge_index = radius(x, y, 2, batch_x, batch_y, max_num_neighbors=4)
assert to_set(edge_index) == set([(0, 0), (0, 1), (0, 2), (0, 3), (1, 5),
(1, 6)])
# Skipping a batch
batch_x = tensor([0, 0, 0, 0, 2, 2, 2, 2], torch.long, device)
batch_y = tensor([0, 2], torch.long, device)
edge_index = radius(x, y, 2, batch_x, batch_y, max_num_neighbors=4)
assert to_set(edge_index) == set([(0, 0), (0, 1), (0, 2), (0, 3), (1, 5),
(1, 6)])
@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_radius_graph(dtype, device):
x = tensor([
[-1, -1],
[-1, +1],
[+1, +1],
[+1, -1],
], dtype, device)
edge_index = radius_graph(x, r=2.5, flow='target_to_source')
assert to_set(edge_index) == set([(0, 1), (0, 3), (1, 0), (1, 2), (2, 1),
(2, 3), (3, 0), (3, 2)])
edge_index = radius_graph(x, r=2.5, flow='source_to_target')
assert to_set(edge_index) == set([(1, 0), (3, 0), (0, 1), (2, 1), (1, 2),
(3, 2), (0, 3), (2, 3)])
jit = torch.jit.script(radius_graph)
edge_index = jit(x, r=2.5, flow='source_to_target')
assert to_set(edge_index) == set([(1, 0), (3, 0), (0, 1), (2, 1), (1, 2),
(3, 2), (0, 3), (2, 3)])
@pytest.mark.parametrize('dtype,device', product([torch.float], devices))
def test_radius_graph_large(dtype, device):
x = torch.randn(1000, 3, dtype=dtype, device=device)
edge_index = radius_graph(x,
r=0.5,
flow='target_to_source',
loop=True,
max_num_neighbors=2000)
tree = scipy.spatial.cKDTree(x.cpu().numpy())
col = tree.query_ball_point(x.cpu(), r=0.5)
truth = set([(i, j) for i, ns in enumerate(col) for j in ns])
assert to_set(edge_index.cpu()) == truth
|