File: README.md

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (33 lines) | stat: -rw-r--r-- 1,169 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

## Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
```
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
```

## Benchmark List

Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist:

* [Fast RNNs](fastrnns/README.md)
* [Dynamo](dynamo/README.md)
* [Functional autograd](functional_autograd_benchmark/README.md)
* [Instruction counts](instruction_counts/README.md)
* [Operator](operator_benchmark/README.md)
* [Overrides](overrides_benchmark/README.md)
* [Sparse](sparse/README.md)
* [Tensor expression](tensorexpr/HowToRun.md)