File: iteration_steps.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (25 lines) | stat: -rw-r--r-- 1,088 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def basic_iteration_step(
    self, ddp_model, criterion, optimizer, hook_state, epoch, index, batch
):
    r"""
    A function that performs an iteration of training.
    Args:
        ddp_model (nn.Module): distributed data parallel model
        criterion (nn.Module): loss function to measure model
        optimizer (optim.Optimizer): updates model parameters
        hook_state (object): ddp communication hook state object
        epoch (int): index of pass through the data
        index (int): iteration number - 1 in current batch
        batch (list): training examples
    """
    hook_state.next_batch()
    self.record_batch_start(self.epoch_key(epoch, index))
    optimizer.zero_grad()
    self.record_forward_start(self.epoch_key(epoch, index))
    loss = criterion(ddp_model(batch[0]), batch[1])
    self.record_forward_end(self.epoch_key(epoch, index))
    self.record_backward_start(self.epoch_key(epoch, index))
    loss.backward()
    self.record_backward_end(self.epoch_key(epoch, index))
    optimizer.step()
    self.record_batch_end(self.epoch_key(epoch, index))