1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
"""
Update commited CSV files used as reference points by dynamo/inductor CI.
Currently only cares about graph breaks, so only saves those columns.
Hardcodes a list of job names and artifacts per job, but builds the lookup
by querying github sha and finding associated github actions workflow ID and CI jobs,
downloading artifact zips, extracting CSVs and filtering them.
Usage:
python benchmarks/dynamo/ci_expected_accuracy.py <sha of pytorch commit that has completed inductor benchmark jobs>
Known limitations:
- doesn't handle 'retry' jobs in CI, if the same hash has more than one set of artifacts, gets the first one
"""
import argparse
import json
import os
import subprocess
import sys
import urllib
from io import BytesIO
from itertools import product
from pathlib import Path
from urllib.request import urlopen
from zipfile import ZipFile
import pandas as pd
import requests
"""
WITH job as (
SELECT
job.created_at as time,
job.name as job_name,
workflow.name as workflow_name,
job.id as id,
job.run_attempt as run_attempt,
workflow.id as workflow_id
FROM
default.workflow_job job final
INNER JOIN default.workflow_run workflow final on workflow.id = job.run_id
WHERE
job.name != 'ciflow_should_run'
AND job.name != 'generate-test-matrix'
-- Filter out workflow_run-triggered jobs, which have nothing to do with the SHA
AND workflow.event != 'workflow_run'
-- Filter out repository_dispatch-triggered jobs, which have nothing to do with the SHA
AND workflow.event != 'repository_dispatch'
AND workflow.head_sha = {sha: String}
AND job.head_sha = {sha: String}
AND workflow.repository.'full_name' = {repo: String}
)
SELECT
workflow_name as workflowName,
job_name as jobName,
CAST(id as String) as id,
run_attempt as runAttempt,
CAST(workflow_id as String) as workflowId,
time
from
job
ORDER BY
workflowName, jobName
"""
ARTIFACTS_QUERY_URL = (
"https://console-api.clickhouse.cloud/.api/query-endpoints/"
"c1cdfadc-6bb2-4a91-bbf9-3d19e1981cd4/run?format=JSON"
)
CSV_LINTER = str(
Path(__file__).absolute().parent.parent.parent.parent
/ "tools/linter/adapters/no_merge_conflict_csv_linter.py"
)
def query_job_sha(repo, sha):
params = {
"queryVariables": {"sha": sha, "repo": repo},
}
# If you are a Meta employee, go to P1679979893 to get the id and secret.
# Otherwise, ask a Meta employee give you the id and secret.
KEY_ID = os.environ["CH_KEY_ID"]
KEY_SECRET = os.environ["CH_KEY_SECRET"]
r = requests.post(
url=ARTIFACTS_QUERY_URL,
data=json.dumps(params),
headers={"Content-Type": "application/json"},
auth=(KEY_ID, KEY_SECRET),
)
return r.json()["data"]
def parse_job_name(job_str):
return (part.strip() for part in job_str.split("/"))
def parse_test_str(test_str):
return (part.strip() for part in test_str[6:].strip(")").split(","))
S3_BASE_URL = "https://gha-artifacts.s3.amazonaws.com"
def get_artifacts_urls(results, suites):
urls = {}
for r in results:
if (
r["workflowName"] in ("inductor", "inductor-periodic")
and "test" in r["jobName"]
):
config_str, test_str = parse_job_name(r["jobName"])
suite, shard_id, num_shards, machine, *_ = parse_test_str(test_str)
workflowId = r["workflowId"]
id = r["id"]
runAttempt = r["runAttempt"]
if suite in suites:
artifact_filename = f"test-reports-test-{suite}-{shard_id}-{num_shards}-{machine}_{id}.zip"
s3_url = f"{S3_BASE_URL}/{repo}/{workflowId}/{runAttempt}/artifact/{artifact_filename}"
urls[(suite, int(shard_id))] = s3_url
print(f"{suite} {shard_id}, {num_shards}: {s3_url}")
return urls
def normalize_suite_filename(suite_name):
strs = suite_name.split("_")
subsuite = strs[-1]
if "timm" in subsuite:
subsuite = subsuite.replace("timm", "timm_models")
return subsuite
def download_artifacts_and_extract_csvs(urls):
dataframes = {}
for (suite, shard), url in urls.items():
try:
resp = urlopen(url)
subsuite = normalize_suite_filename(suite)
artifact = ZipFile(BytesIO(resp.read()))
for phase in ("training", "inference"):
name = f"test/test-reports/{phase}_{subsuite}.csv"
try:
df = pd.read_csv(artifact.open(name))
df["graph_breaks"] = df["graph_breaks"].fillna(0).astype(int)
prev_df = dataframes.get((suite, phase), None)
dataframes[(suite, phase)] = (
pd.concat([prev_df, df]) if prev_df is not None else df
)
except KeyError:
print(
f"Warning: Unable to find {name} in artifacts file from {url}, continuing"
)
except urllib.error.HTTPError:
print(f"Unable to download {url}, perhaps the CI job isn't finished?")
return dataframes
def write_filtered_csvs(root_path, dataframes):
for (suite, phase), df in dataframes.items():
out_fn = os.path.join(root_path, f"{suite}_{phase}.csv")
df.to_csv(out_fn, index=False, columns=["name", "accuracy", "graph_breaks"])
apply_lints(out_fn)
def apply_lints(filename):
patch = json.loads(subprocess.check_output([sys.executable, CSV_LINTER, filename]))
if patch.get("replacement"):
with open(filename) as fd:
data = fd.read().replace(patch["original"], patch["replacement"])
with open(filename, "w") as fd:
fd.write(data)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("sha")
args = parser.parse_args()
repo = "pytorch/pytorch"
suites = {
f"{a}_{b}"
for a, b in product(
[
"aot_eager",
"aot_inductor",
"cpu_aot_inductor",
"cpu_aot_inductor_amp_freezing",
"cpu_aot_inductor_freezing",
"cpu_inductor",
"cpu_inductor_amp_freezing",
"cpu_inductor_freezing",
"dynamic_aot_eager",
"dynamic_cpu_aot_inductor",
"dynamic_cpu_aot_inductor_amp_freezing",
"dynamic_cpu_aot_inductor_freezing",
"dynamic_cpu_inductor",
"dynamic_inductor",
"dynamo_eager",
"inductor",
],
["huggingface", "timm", "torchbench"],
)
}
root_path = "benchmarks/dynamo/ci_expected_accuracy/"
assert os.path.exists(root_path), f"cd <pytorch root> and ensure {root_path} exists"
results = query_job_sha(repo, args.sha)
urls = get_artifacts_urls(results, suites)
dataframes = download_artifacts_and_extract_csvs(urls)
write_filtered_csvs(root_path, dataframes)
print("Success. Now, confirm the changes to .csvs and `git add` them if satisfied.")
|