1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
|
#!/usr/bin/env python3
from __future__ import annotations
import abc
import argparse
import collections
import contextlib
import copy
import csv
import dataclasses
import functools
import importlib
import itertools
import json
import logging
import os
import shutil
import signal
import subprocess
import sys
import time
import weakref
from contextlib import contextmanager
from pathlib import Path
from typing import (
Any,
Callable,
Generator,
List,
Mapping,
NamedTuple,
Optional,
Sequence,
Tuple,
Type,
TYPE_CHECKING,
)
from typing_extensions import Self
from unittest.mock import MagicMock
import numpy as np
import numpy.typing as npt
import pandas as pd
import psutil
import yaml
from scipy.stats import gmean, ttest_ind
from tqdm.auto import tqdm, trange
import torch
import torch._dynamo
import torch._dynamo.utils
import torch._export
import torch.distributed
import torch.multiprocessing as mp
from torch._C import _has_cuda as HAS_CUDA, _has_xpu as HAS_XPU
from torch._dynamo.profiler import fx_insert_profiling, Profiler
from torch._dynamo.testing import (
dummy_fx_compile,
format_speedup,
reset_rng_state,
same,
)
from torch._logging.scribe import open_source_signpost
try:
from torch._dynamo.utils import (
clone_inputs,
graph_break_reasons,
maybe_enable_compiled_autograd,
)
from torch._inductor.utils import fresh_inductor_cache
except ImportError:
from _dynamo.utils import (
clone_inputs,
graph_break_reasons,
maybe_enable_compiled_autograd,
)
import torch._functorch.config
from torch._functorch.aot_autograd import set_model_name
from torch._inductor import config as inductor_config, metrics
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map, tree_map_only
try:
import torch_xla
import torch_xla.core.xla_model as xm
# This is to woraround the backward issue https://github.com/pytorch/xla/issues/4174
torch_xla._XLAC._init_computation_client()
except ImportError:
# ignore the error if torch_xla is not installed
pass
if TYPE_CHECKING:
from torch.onnx._internal.fx import diagnostics
log = logging.getLogger(__name__)
# We are primarily interested in TF32
torch.backends.cuda.matmul.allow_tf32 = True
# Suppress torch.profiler spam
os.environ["KINETO_LOG_LEVEL"] = "5"
current_name = ""
current_device = ""
current_backend = ""
current_mode = ""
current_dtype = ""
current_quantization = ""
current_settings = None
current_onnx_compiler = ""
current_batch_size = None
output_filename = None
disable_output = False
MAX_DOWNLOAD_ATTEMPTS = 5
class CI(NamedTuple):
backend: str # aot_eager or inductor
training: bool
dynamic: bool = False
device: str = "cuda"
CI_SKIP_OPTIMIZER = {
# TIMM
"convmixer_768_32", # accuracy
"hrnet_w18", # Stack issue in fx
# HF
"pnasnet5large", # Stack issue in fx
"MobileBertForMaskedLM", # Stack issue in fx
"MobileBertForQuestionAnswering", # Stack issue in fx
"PegasusForConditionalGeneration", # OOM
}
try:
from .fb.common import INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY
except ImportError:
INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY = set()
CI_SKIP_DYNAMIC_BATCH_ONLY = {
"sam",
# See https://github.com/mindee/doctr/blob/f2114758d529ed8d3d0030581638f0520b6b98d8/doctr/models/detection/core.py#L89
# It iterates over the batch, which is dynamic, and dynamo chokes
# We should be able to graphbreak there.
"doctr_det_predictor",
"dlrm",
"pyhpc_isoneutral_mixing",
"pyhpc_equation_of_state",
"pyhpc_turbulent_kinetic_energy",
"detectron2_fcos_r_50_fpn",
"detectron2_fasterrcnn_r_101_c4",
"detectron2_fasterrcnn_r_101_dc5",
"detectron2_fasterrcnn_r_101_fpn",
"detectron2_fasterrcnn_r_50_c4",
"detectron2_fasterrcnn_r_50_dc5",
"detectron2_fasterrcnn_r_50_fpn",
"hf_T5_generate",
"Reformer",
"llama",
}.union(INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY)
# These models currently fail accuracy with eager Adam optimizer
# so we use SGD when running the full benchmarks
# https://github.com/pytorch/pytorch/issues/115966
BENCHMARK_USE_SGD = {
# TorchBench
"BERT_pytorch",
"LearningToPaint",
"alexnet",
"dcgan",
"demucs",
"densenet121",
"dlrm",
"fastNLP_Bert",
"mobilenet_v2",
"phlippe_densenet",
"phlippe_resnet",
"pytorch_stargan",
"resnet18",
"shufflenet_v2_x1_0",
"speech_transformer",
"squeezenet1_1",
"stable_diffusion_text_encoder",
"timm_efficientdet",
"timm_nfnet",
"timm_regnet",
"timm_vision_transformer",
"timm_vovnet",
"vgg16",
"hf_T5", # Fails dynamic https://github.com/pytorch/pytorch/issues/115968
# HF
"AlbertForMaskedLM",
"BartForCausalLM",
"BartForConditionalGeneration",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"DebertaV2ForQuestionAnswering", # eager OOM
"ElectraForCausalLM",
"M2M100ForConditionalGeneration",
"MBartForCausalLM",
"MBartForConditionalGeneration",
"OPTForCausalLM",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PegasusForCausalLM",
"Speech2Text2ForCausalLM",
"TrOCRForCausalLM",
"XGLMForCausalLM",
# TIMM
"adv_inception_v3",
"botnet26t_256",
"cait_m36_384", # OOM
"coat_lite_mini",
"convit_base",
"dpn107",
"fbnetv3_b",
"gernet_l",
"lcnet_050",
"mixnet_l",
"res2net101_26w_4s",
"res2net50_14w_8s",
"res2next50",
"resnest101e",
"sebotnet33ts_256",
"swsl_resnext101_32x16d",
"tf_efficientnet_b0",
"ghostnet_100",
"gmixer_24_224",
"tinynet_a",
}
# These models OOM in CI
# due to the extra memory of Adam optimizer states,
# so we fall back to SGD in CI
CI_USE_SGD = {
"torchrec_dlrm",
"demucs",
"detectron2_fasterrcnn_r_101_c4",
"detectron2_fasterrcnn_r_101_dc5",
"detectron2_fasterrcnn_r_101_fpn",
"detectron2_fasterrcnn_r_50_c4",
"detectron2_fasterrcnn_r_50_dc5",
"detectron2_fasterrcnn_r_50_fpn",
"detectron2_maskrcnn_r_101_c4",
"detectron2_maskrcnn_r_101_fpn",
"detectron2_maskrcnn_r_50_c4",
"detectron2_maskrcnn_r_50_fpn",
"hf_T5_base",
"hf_clip",
"llama_v2_7b_16h",
"mobilenet_v2_quantized_qat",
"phi_1_5 resnet50_quantized_qat",
"BlenderbotForCausalLM",
"cait_m36_384",
"DALLE2_pytorch",
"moco",
"timm_efficientdet",
"ghostnet_100",
"regnety_002",
"poolformer_m36",
"inception_v3",
"tinynet_a",
"selecsls42b",
"mobilevit_s",
"pytorch_CycleGAN_and_pix2pix",
"vision_maskrcnn",
"resmlp_12_224",
"dlrm",
"resnet50",
"dm_nfnet_f0",
"pit_b_224",
"tf_mixnet_l",
}
DO_NOT_CAST_INPUTS = {"stable_diffusion"}
# Maps a benchmark model name to a list of status codes. For any listed entry, we'll
# capture TORCH_COMPILE_DEBUG logs in CI runs and preseve them (i.e., for upload) if
# the result status matches one listed.
CI_PRESERVE_COMPILE_DEBUG = {
# For example:
# "mnasnet1_0": ["fail_accuracy"],
}
@functools.lru_cache(maxsize=1)
def load_yaml_file(filename):
filepath = os.path.join(os.path.dirname(__file__), filename)
with open(filepath) as f:
data = yaml.safe_load(f)
internal_file_path = os.path.join(os.path.dirname(__file__), "fb", filename)
if os.path.exists(internal_file_path):
with open(internal_file_path) as f:
internal_data = yaml.safe_load(f)
data.update(internal_data)
def flatten(lst):
for item in lst:
if isinstance(item, list):
yield from flatten(item)
else:
yield item
def maybe_list_to_set(obj):
if isinstance(obj, dict):
return {k: maybe_list_to_set(v) for k, v in obj.items()}
if isinstance(obj, list):
return set(flatten(obj))
return obj
return maybe_list_to_set(data)
def model_specified_by_path(path_and_class_str):
return ":" in path_and_class_str
def load_model_from_path(path_and_class_str):
configs = {}
for kvstr in path_and_class_str.split(","):
k, v = kvstr.split(":")
configs[k] = v
for name in ["path", "class"]:
if name not in configs:
raise RuntimeError(
"Invalid --only arguments. Check help message for the correct format"
)
path = configs["path"]
class_name = configs["class"]
if path[:1] != "/":
raise RuntimeError(
"Use absolute path since dynamo may change the current working directory which makes using relative path tricky"
)
spec = importlib.util.spec_from_file_location("module_name", path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
model_class = getattr(module, class_name)
assert issubclass(model_class, torch.nn.Module)
model = model_class()
assert hasattr(model, "get_example_inputs")
inputs = model.get_example_inputs()
return model, inputs
def write_outputs(filename, headers, row):
"""
Write both CSV and JSON outputs using the original CSV output interface
"""
global disable_output
if disable_output:
return
output_csv(filename, headers, row)
output_json(filename, headers, row)
def output_csv(filename, headers, row):
if os.path.exists(filename):
with open(filename) as fd:
lines = list(csv.reader(fd)) or [[]]
if headers and len(headers) > len(lines[0]):
# if prior results failed the header might not be filled in yet
lines[0] = headers
else:
headers = lines[0]
else:
lines = [headers]
lines.append([(f"{x:.6f}" if isinstance(x, float) else x) for x in row])
with open(filename, "w") as fd:
writer = csv.writer(fd, lineterminator="\n")
for line in lines:
writer.writerow(list(line) + ["0"] * (len(headers) - len(line)))
def output_json(filename, headers, row):
"""
Write the result into JSON format, so that it can be uploaded to the benchmark database
to be displayed on OSS dashboard. The JSON format is defined at
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
origin = ""
if "torchbench" in filename:
origin = "torchbench"
elif "huggingface" in filename:
origin = "huggingface"
elif "timm_models" in filename:
origin = "timm_models"
extra_info = {
"device": current_device,
"quantization": current_quantization,
"batch_size": current_batch_size,
}
if current_settings:
extra_info.update(current_settings)
mapping_headers = {headers[i]: v for i, v in enumerate(row)}
with open(f"{os.path.splitext(filename)[0]}.json", "a") as f:
for header, value in mapping_headers.items():
# These headers are not metric names
if header in ("dev", "name", "batch_size"):
continue
# Make sure that the record is valid
if not current_name:
continue
record = {
"benchmark": {
"name": "TorchInductor",
"mode": current_mode,
"dtype": current_dtype,
"extra_info": extra_info,
},
"model": {
"name": current_name,
"type": "OSS model",
"backend": current_backend,
"origins": [origin],
},
"metric": {
"name": header,
"benchmark_values": [value],
},
}
print(json.dumps(record), file=f)
def get_suite_from_model_iter_fn(model_iter_fn):
# TODO: This is a bit of a hack
suite = None
if (runner := getattr(model_iter_fn, "__self__", None)) and hasattr(
runner, "suite_name"
):
suite = runner.suite_name
return suite
def output_signpost(data, args, suite, error=None):
from torch.utils._stats import simple_call_counter
data = data.copy()
if "name" not in data:
data["name"] = current_name
if "dev" not in data:
data["dev"] = current_device
filtered_args = vars(args).copy()
# I generated this list by reading through all the configs and dropping
# ones that looked irrelevant or redundant
for k in [
"filter",
"exclude",
"exclude_exact",
"dump_raw_metrics",
"log_operator_inputs",
"distributed_master_port",
"skip_accuracy_check",
"generate_aot_autograd_stats",
"output",
"output_directory",
"disable_output",
"export_profiler_trace",
"profiler_trace_name",
"explain",
"stats",
"print_memory",
"print_compilation_time",
"print_dataframe_summary",
"print_graph_breaks",
"log_graph_breaks",
"timing",
"progress",
"timeout",
"per_process_memory_fraction",
"minify",
"verbose",
"quiet",
"print_fx",
"print_aten_ops",
"log_conv_args",
"recompile_profiler",
"find_batch_sizes",
# Redundant
"batch_size",
"batch_size_file",
"only",
"diff_branch",
"tag",
"coverage",
"overhead",
"speedup_dynamo_ts",
"speedup_fx2trt",
"speedup_fx2trt_fp16",
"accuracy",
"performance",
"tolerance",
]:
del filtered_args[k]
event_name = "unknown"
if args.accuracy:
event_name = "accuracy"
elif args.quantization:
event_name = "quantization"
elif args.performance:
event_name = "performance"
from torch._dynamo.utils import calculate_time_spent, compilation_time_metrics
open_source_signpost(
subsystem="dynamo_benchmark",
name=event_name,
parameters=json.dumps(
{
**data,
# TODO: Arguably the rest of these should be in the CSV too
"suite": suite,
# Better than using compile_times utils directly
# NB: Externally, compilation_metrics colloquially refers to
# the coarse-grained phase timings, even though internally
# they are called something else
"compilation_metrics": calculate_time_spent(),
"agg_compilation_metrics": {
k: sum(v) for k, v in compilation_time_metrics.items()
},
"detailed_compilation_metrics": compilation_time_metrics,
"simple_call_counter": simple_call_counter,
# NB: args has training vs inference
"args": filtered_args,
"error": error,
}
),
)
def nothing(f):
return f
@functools.lru_cache(None)
def patch_torch_manual_seed():
"""Make torch manual seed deterministic. Helps with accuracy testing."""
def deterministic_torch_manual_seed(*args, **kwargs):
from torch._C import default_generator
seed = 1337
if HAS_CUDA:
import torch.cuda
if not torch.cuda._is_in_bad_fork():
torch.cuda.manual_seed_all(seed)
if HAS_XPU:
import torch.xpu
if not torch.xpu._is_in_bad_fork():
torch.xpu.manual_seed_all(seed)
return default_generator.manual_seed(seed)
torch.manual_seed = deterministic_torch_manual_seed
def empty_gpu_cache(device):
"""
Explicitly empty gpu cache to avoid OOM in subsequent run.
"""
if device not in ["cuda", "xpu"]:
log.warning(
"Trying to call the empty_gpu_cache for device: %s, which is not in list [cuda, xpu]",
device,
)
return
if device == "cuda":
torch.cuda.empty_cache()
elif device == "xpu":
torch.xpu.empty_cache()
def synchronize():
pass
def summarize_graph_break(filename):
"""
Sorts and de-dupes the graphs breaks on the reason string. Note that this
function is just a best effort to reduce the logging information. We could
miss some graph breaks because of de-duping. We can further refine this
function as need arises.
"""
log_file = f"{filename.rstrip('.csv')}_graph_breaks.csv"
if os.path.exists(log_file):
df = pd.read_csv(log_file)
df = df.sort_values("reason").drop_duplicates(subset="reason")
# Specialize for multi tensor sgd as reason is not identical
multi_tensor_sgd_row = df.loc[df["reason"].str.contains("_multi_tensor_sgd")]
if len(multi_tensor_sgd_row):
df = df[
~df["reason"].str.contains("_multi_tensor_sgd")
] # Drop all sgd rows
df = pd.concat(
[df, pd.DataFrame([multi_tensor_sgd_row.iloc[0]])], axis=0
) # Add back a single row
df.to_csv(f"{log_file.rstrip('.csv')}_deduped.csv", index=False)
def print_summary(filename, print_dataframe=False):
if not (filename and os.path.exists(filename)):
return
data = pd.read_csv(filename)
if "tag" in data.columns:
for tag in data.tag.unique():
if tag == "0.0000":
continue # This happens for failed runs
print(f"\nSummary for tag={tag}:")
print_summary_table(data[data.tag == tag], print_dataframe=print_dataframe)
else:
print_summary_table(data, print_dataframe=print_dataframe)
summarize_graph_break(filename)
def print_summary_table(data, print_dataframe=False):
if print_dataframe:
pd.options.display.max_rows = 1000
pd.options.display.max_columns = 1000
pd.options.display.width = 2000
print(data)
width = max(map(len, data.columns))
for col in data.columns:
try:
if col in ("dev", "name", "batch_size", "tag"):
continue
elif col in ("pct_ops", "pct_time"):
print(col.ljust(width), f"{data[col].mean():.3%}")
elif col in ("graphs", "graph_calls", "captured_ops", "total_ops"):
print(col.ljust(width), f"{data[col].mean():.3f}")
elif col in ("compilation_latency"):
print(col.ljust(width), f"mean={data[col].mean():.3f} seconds")
elif col in ("compression_ratio"):
print(col.ljust(width), f"mean={data[col].mean():.3f}x")
elif col in ("accuracy"):
pass_rate = (data[col] == "pass").mean()
print(col.ljust(width), f"pass_rate={100*pass_rate:.2f}%")
else:
cdata = data[col]
print(
col.ljust(width),
f"gmean={gmean(cdata):.2f}x mean={cdata.mean():.3f}x",
)
except Exception:
pass
def tensor_is_on_xla(tensors):
def visit(x: torch.Tensor):
nonlocal result
if x.device.type == "xla":
result = True
result = False
tree_map_only(torch.Tensor, visit, tensors)
return result
def timed(
model,
model_iter_fn,
example_inputs,
times=1,
return_result=False,
collect_outputs=False,
):
use_xla = tensor_is_on_xla(example_inputs)
synchronize()
if use_xla:
xm.mark_step()
xm.wait_device_ops()
time_total = 0
# Dont collect outputs to correctly measure timing
for _ in range(times):
# Put this call inside the loop to reset the seed for each iteration.
# Don't include reset_rng_state() to correctly measure timing
reset_rng_state(use_xla)
t_iter_begin = time.perf_counter()
result = model_iter_fn(model, example_inputs, collect_outputs=collect_outputs)
# instead of calling sync on result_list, we should call mark_step.
# In training case, result_list may be empty, but we want to
# send all the pending graphs for compilation.
if use_xla:
# For the model running on regular torchxla (baseline), we need the
# mark step to send the accumulated graph for compilation.
#
# For the model running with dynamo/torchxla bridge, in training case,
# we need the mark step to send the optimizer graph out for
# compilation.
xm.mark_step()
t_iter_end = time.perf_counter()
time_total += t_iter_end - t_iter_begin
t_0 = time.perf_counter()
if use_xla:
xm.wait_device_ops()
synchronize()
t_1 = time.perf_counter()
time_total += t_1 - t_0
return (time_total, result) if return_result else time_total
def _normalize_bench_inputs(example_inputs) -> Tuple[Tuple[Any], Mapping[str, Any]]:
# NOTE(bowbao): For huggingface benchmark, example_inputs are formatted as dictionary,
# and consumed like `model(**example_inputs)`.
# For other benchmarks, example_inputs are formatted as tuple and consumed
# like `model(*example_inputs)`.
if isinstance(example_inputs, dict):
return (), example_inputs
else:
return tuple(example_inputs), {}
def _register_dataclass_output_as_pytree(example_outputs) -> None:
# NOTE(angelayi): For huggingface benchmark, some example outputs are
# formatted as a dataclass which pytree cannot consume. So we want
# to register the pytree implementation here
example_outputs_flat = pytree.tree_leaves(example_outputs)
output_dataclass_types = [
type(out) for out in example_outputs_flat if dataclasses.is_dataclass(type(out))
]
for output_type in output_dataclass_types:
from torch._export.utils import register_dataclass_as_pytree_node
register_dataclass_as_pytree_node(
output_type,
serialized_type_name=f"{output_type.__module__}.{output_type.__name__}",
)
class Stats:
totals = collections.defaultdict(collections.Counter)
@classmethod
def reset_counters(cls):
for k, v in torch._dynamo.utils.counters.items():
cls.totals[k].update(v)
ok = torch._dynamo.utils.counters["frames"]["ok"]
total = torch._dynamo.utils.counters["frames"]["total"]
torch._dynamo.utils.counters.clear()
return ok, total
@classmethod
def print_summary(cls):
for k, v in sorted(cls.totals.items()):
lines = "\n ".join(map(str, v.most_common(50)))
print(f"STATS {k}\n {lines}")
@classmethod
def aot_summary(cls):
return [cls.totals["aot_autograd"]["total"], cls.totals["aot_autograd"]["ok"]]
def coverage_experiment(args, model_iter_fn, model, example_inputs):
"""
Test operator/model coverage of TorchDynamo and record statistics
taken from a profiler. This target is mainly intended to check
correctness.
Writes to ./coverage.csv
"""
profiler = Profiler()
frozen_model_iter_fn = torch._dynamo.run(model_iter_fn)
with profiler.prof:
frozen_model_iter_fn(model, example_inputs)
coverage_result = profiler.results()
write_outputs(
output_filename,
(
"dev",
"name",
"batch_size",
"graphs",
"graph_calls",
"captured_ops",
"total_ops",
"pct_ops",
"pct_time",
),
[
current_device,
current_name,
current_batch_size,
]
+ coverage_result.tocsv(),
)
return coverage_result
def speedup_experiment_fx2trt(args, model_iter_fn, model, example_inputs):
"""
Measure speedups over eager using the trt inference backend. TRT backend is based fx graph
generated by torch._dynamo.
Writes to ./speedups_fx2trt.csv
"""
return speedup_experiment(args, model_iter_fn, model, example_inputs)
# TODO: CompilerProfiler is deprecated, remove this
def recompile_profiler_experiment(args, model_iter_fn, model, example_inputs):
prof = torch._dynamo.utils.CompilerProfiler()
opt_model_iter_fn = torch._dynamo.optimize(prof, nopython=args.nopython)(
model_iter_fn
)
opt_model_iter_fn(model, example_inputs)
write_outputs(
output_filename, ["model", "profiler report"], [current_name, prof.report()]
)
met = prof.get_metrics()
guard_failures = len(met["guard_failures"])
return [guard_failures]
def randomize_input(inputs):
if isinstance(inputs, (list, tuple)):
return type(inputs)([randomize_input(x) for x in inputs])
elif isinstance(inputs, torch.Tensor):
if inputs.dtype in (torch.float32, torch.float64):
torch._dynamo.utils.counters["randomize_input"]["times"] += 1
return torch.randn_like(inputs)
elif inputs.dtype == torch.int64:
# Note: we can not simply tune integer tensors as follows
# `return torch.randint_like(inputs, high=inputs.max().item())`
# This may break some invariants between tensors.
# E.g. in embedding lookup case, one tensor is the length
# and another is an indices tensor.
return inputs
else:
raise RuntimeError(
f"randomize_input need support tensor of type {inputs.dtype}"
)
else:
raise RuntimeError(
f"randomize_input can not handle input of type {type(inputs)}"
)
def maybe_mark_step(args):
if args.trace_on_xla:
xm.mark_step()
def latency_experiment(args, model_iter_fn, model, example_inputs, mark, **kwargs):
"""
Measure latency on a specific backend.
"""
timings = np.zeros((args.repeat,), np.float64)
# if we randomize the input, we should also check the result is correct
should_randomize_input = args.randomize_input
import contextlib
from torch._inductor.utils import maybe_profile
@contextlib.contextmanager
def maybe_mark_profile(*args, **kwargs):
prof: torch.profiler.profile = kwargs.pop("p", None)
mark = kwargs.pop("mark", None)
if prof:
with torch.profiler.record_function(mark):
yield
else:
yield
times = args.iterations_per_run
with maybe_profile(args.export_profiler_trace) as p:
for rep in trange(args.repeat, desc="running benchmark"):
inputs = (
randomize_input(copy.deepcopy(example_inputs))
if should_randomize_input
else example_inputs
)
# need call mark_step to perform the computation
# on randomize_input. Otherwise the first call using the
# inputs will incur high penalty then the next one.
maybe_mark_step(args)
with maybe_mark_profile(p=p, mark=mark), maybe_enable_compiled_autograd(
args.compiled_autograd,
fullgraph=args.nopython,
dynamic=args.dynamic_shapes,
):
timings[rep], actual_output = timed(
model,
model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
if args.export_profiler_trace:
name = args.profiler_trace_name + "_" + model.name
if hasattr(args, "rank"):
name += f"_rank_{args.rank}"
name += ".json"
name = os.path.join(torch._dynamo.config.base_dir, name)
p.export_chrome_trace(name)
return timings
# TODO: This seems to be specifically triggered by torchao testing
def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
median = np.median(timings, axis=0)
speedup = median[0] / median[1]
if args.dump_raw_metrics:
np.save(
f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy",
timings,
)
first_headers = ["dev", "name", "batch_size"]
first_fields = [current_device, current_name, current_batch_size]
if "tag" in kwargs:
first_headers.append("tag")
first_fields.append(kwargs["tag"])
headers = first_headers + ["speedup", "abs_latency"]
row = first_fields + [float(speedup), median[1] * 1000]
msg = f"{speedup:.3f}x"
if args.baseline:
headers.extend(
[
"baseline",
"speedup_vs_baseline",
]
)
df = pd.read_csv(args.baseline)
try:
baseline_speedup = df[df["name"] == current_name]["speedup"].item()
row.extend([baseline_speedup, speedup / baseline_speedup])
msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]"
except (KeyError, ZeroDivisionError):
row.extend(
[
0.0,
0.0,
]
)
if "compilation_latency" in kwargs:
headers += [
"compilation_latency",
"compression_ratio",
"eager_peak_mem",
"dynamo_peak_mem",
]
row.append(kwargs["compilation_latency"])
row.append(kwargs["compression_ratio"])
row.append(kwargs["eager_peak_mem"])
row.append(kwargs["dynamo_peak_mem"])
if "cache_lookup_latency" in kwargs:
headers.append("cache_lookup_latency")
row.append(kwargs["cache_lookup_latency"])
if "dynamo_stats" in kwargs:
for k, v in kwargs["dynamo_stats"].items():
headers.append(k)
row.append(v)
write_outputs(
output_filename,
headers,
row,
)
c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True)
assert (
output_filename.find(".csv") > 0
), f"expected output_filename to be a .csv, but got {output_filename}"
write_outputs(
output_filename[:-4] + "_compilation_metrics.csv",
first_headers + c_headers,
first_fields + c_data,
)
# Hypothetically you can use this from other places, but it's currently
# inaccessible, and when this assert fails you need to update the
# event_name here to account for the other cases you are using this
assert args.quantization is not None
output_signpost(
dict(zip(headers, row)),
args,
suite_name,
)
return msg
def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
"""
Measure speedups over eager.
Writes to ./speedups.csv
"""
# if args.dynamic_shapes:
# return speedup_experiment_ds(args, model_iter_fn, model, example_inputs)
timings = np.zeros((args.repeat, 2), np.float64)
# if we randomize the input, we should also check the result is correct
should_randomize_input = args.randomize_input
import contextlib
from torch._inductor.utils import maybe_profile
@contextlib.contextmanager
def maybe_mark_profile(*args, **kwargs):
prof: torch.profiler.profile = kwargs.pop("p", None)
mark = kwargs.pop("mark", None)
if prof:
with torch.profiler.record_function(mark):
yield
else:
yield
times = args.iterations_per_run
# Use higher tolerance for XLA since XLA cause numerical unstability when
# graph size changes
tolerance = args.xla_tolerance if args.trace_on_xla else 1e-4
torch._dynamo.config.repro_tolerance = tolerance
with maybe_profile(args.export_profiler_trace) as p:
if args.export_aot_inductor:
frozen_model_iter_fn = export_aot_inductor(model, example_inputs)
else:
frozen_model_iter_fn = torch._dynamo.run(model_iter_fn)
for rep in trange(args.repeat, desc="running benchmark"):
inputs = (
randomize_input(copy.deepcopy(example_inputs))
if should_randomize_input
else example_inputs
)
# need call mark_step to perform the computation
# on randomize_input. Otherwise the first call using the
# inputs will incur high penalty then the next one.
maybe_mark_step(args)
# interleave the runs to handle frequency scaling and load changes
with maybe_mark_profile(p=p, mark="expected"):
timings[rep, 0], expected_output = timed(
model,
model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
# call mark_step between the 2 calls to make the comparison fair.
maybe_mark_step(args)
with maybe_mark_profile(p=p, mark="actual"), maybe_enable_compiled_autograd(
args.compiled_autograd,
fullgraph=args.nopython,
dynamic=args.dynamic_shapes,
):
timings[rep, 1], actual_output = timed(
model,
frozen_model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
if args.export_profiler_trace:
name = args.profiler_trace_name + "_" + model.name
if hasattr(args, "rank"):
name += f"_rank_{args.rank}"
name += ".json"
name = os.path.join(torch._dynamo.config.base_dir, name)
p.export_chrome_trace(name)
median = np.median(timings, axis=0)
speedup = median[0] / median[1]
if args.dump_raw_metrics:
np.save(
f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy",
timings,
)
first_headers = ["dev", "name", "batch_size"]
first_fields = [current_device, current_name, current_batch_size]
if "tag" in kwargs:
first_headers.append("tag")
first_fields.append(kwargs["tag"])
headers = first_headers + ["speedup", "abs_latency"]
row = first_fields + [float(speedup), median[1] * 1000]
msg = f"{speedup:.3f}x"
if args.baseline:
headers.extend(
[
"baseline",
"speedup_vs_baseline",
]
)
df = pd.read_csv(args.baseline)
try:
baseline_speedup = df[df["name"] == current_name]["speedup"].item()
row.extend([baseline_speedup, speedup / baseline_speedup])
msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]"
except (KeyError, ZeroDivisionError):
row.extend(
[
0.0,
0.0,
]
)
if "compilation_latency" in kwargs:
headers += [
"compilation_latency",
"compression_ratio",
"eager_peak_mem",
"dynamo_peak_mem",
]
row.append(kwargs["compilation_latency"])
row.append(kwargs["compression_ratio"])
row.append(kwargs["eager_peak_mem"])
row.append(kwargs["dynamo_peak_mem"])
if "cache_lookup_latency" in kwargs:
headers.append("cache_lookup_latency")
row.append(kwargs["cache_lookup_latency"])
if "dynamo_stats" in kwargs:
for k, v in kwargs["dynamo_stats"].items():
headers.append(k)
row.append(v)
write_outputs(
output_filename,
headers,
row,
)
c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True)
assert (
output_filename.find(".csv") > 0
), f"expected output_filename to be a .csv, but got {output_filename}"
write_outputs(
output_filename[:-4] + "_compilation_metrics.csv",
first_headers + c_headers,
first_fields + c_data,
)
output_signpost(
dict(zip(headers, row)),
args,
get_suite_from_model_iter_fn(model_iter_fn),
)
return msg
# WARNING: This code is currently dead
def speedup_experiment_ds(args, model_iter_fn, model, example_inputs):
"""
Run dynamic shapes benchmarks.
Requires dynamic shape compatible models, which provide a list of example inputs.
Warms up using the first input example and then iterates the inputs,
measuring (and expecting minimal) variance between the runtime for different examples.
"""
timings = np.zeros((args.repeat, len(example_inputs), 2), np.float64)
if args.repeat > 5:
print(
f"\ndynamic shapes experiments are slow, consider setting --repeat less than {args.repeat}\n"
)
nwarmup = 4
for rep in range(args.repeat):
# Start each rep fresh, e.g. only warmup on example 0
torch._dynamo.reset()
optimized_model_iter_fn = optimize_ctx(model_iter_fn)
for _ in range(nwarmup):
optimized_model_iter_fn(model, example_inputs[0])
for input_idx, inputs in enumerate(example_inputs):
# interleave the runs to handle frequency scaling and load changes
timings[rep, input_idx, 0] = timed(
model, model_iter_fn, inputs, return_result=False
)
# different from regular speedup_experiment, we _DO_ want to allow recompilation
timings[rep, input_idx, 1] = timed(
model, optimized_model_iter_fn, inputs, return_result=False
)
medians = np.median(timings, axis=0)
speedups = list(medians[:, 0] / medians[:, 1])
speedups_mean = np.mean(speedups)
speedups_median = np.median(speedups)
speedups_var = np.var(speedups)
# TODO this x[0] is not going to work in general but bert only has 1 input
shapes = [x[0].shape for x in example_inputs]
shape_keys = sorted(set(shapes))
shape_speedups = {
shape: [
it[1] for it in filter(lambda it: it[0] == shape, zip(shapes, speedups))
]
for shape in shape_keys
}
output_str = (
f"mean: {speedups_mean:.3f}, median: {speedups_median:.3f}, var: {speedups_var:.3f}"
+ "\nSpeedups by shape: "
+ "\n".join(
[
f"{shape}: "
+ ", ".join([f"{speedup: .3g}" for speedup in shape_speedups[shape]])
for shape in shape_keys
]
)
)
write_outputs(
output_filename,
("dev", "name", "batch_size", "speedup mean", "speedup median", "speedup var"),
[
current_device,
current_name,
current_batch_size,
speedups_mean,
speedups_median,
speedups_var,
],
)
return output_str
@contextlib.contextmanager
def override_synchronize_with_onnx_iobinding(iobinding):
global synchronize
prev_synchrnoize = synchronize
try:
if iobinding is not None:
def new_synchronize():
iobinding.synchronize_inputs()
iobinding.synchronize_outputs()
synchronize = new_synchronize
yield
finally:
synchronize = prev_synchrnoize
def speedup_experiment_onnx(
args,
model_iter_fn,
onnx_model: OnnxModel,
model,
example_inputs,
**kwargs,
):
"""
Measure speedups over eager.
This function is responsible for the following:
1. Creating iobinding with OnnxModel if device is CUDA, which is essential for perf measurement.
2. Running ORT with OnnxModel.
Writes to ./{output_filename}, which should be
`Path(self.output_dir) / f"{self.compiler}_{suite}_{self.dtype}_{self.mode}_{self.device}_{self.testing}.csv".
TODO(bowbao): Record export time and export peak memory usage.
"""
timings = np.zeros((args.repeat, 2), np.float64)
is_correct = True
should_randomize_input = args.randomize_input
times = args.iterations_per_run
def create_onnx_input_binded_fn(onnx_model: OnnxModel, pt_inputs, example_outputs):
# Goal is to move the iobinding creation outside of the timer function.
iobinding, outputs = onnx_model.create_iobinding(pt_inputs, example_outputs)
def onnxrt_model_iter_fn(model, inputs, collect_outputs=True):
onnx_model.run_with_iobinding(iobinding, outputs)
if collect_outputs:
return outputs
return onnxrt_model_iter_fn, iobinding
def create_onnx_fn(onnx_model: OnnxModel, pt_inputs):
# NOTE: Making perf comparison fair by moving out the i/o adapting part.
# 1. Pre-adapt `pt_inputs` to `onnx_inputs` here.
# 2. Drop `onnx_outputs` to `pt_outputs` adapting. Output comparison is not part of perf measurement.
onnx_inputs = onnx_model.adapt_pt_inputs_to_onnx(pt_inputs)
def onnxrt_model_iter_fn(model, inputs, collect_outputs=True):
return onnx_model.run_with_onnx_inputs(onnx_inputs)
return onnxrt_model_iter_fn
def timed_onnx(model, onnx_model: OnnxModel, inputs):
if current_device == "cpu" or onnx_model.is_cpu():
onnxrt_model_iter_fn = create_onnx_fn(onnx_model, inputs)
iobinding = None
else:
onnxrt_model_iter_fn, iobinding = create_onnx_input_binded_fn(
onnx_model, inputs, expected_output
)
with override_synchronize_with_onnx_iobinding(iobinding):
return timed(
model,
onnxrt_model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
# Insert ONNX warm-up
inputs = (
randomize_input(copy.deepcopy(example_inputs))
if should_randomize_input
else example_inputs
)
_, expected_output = timed(
model,
model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
for _ in range(2):
timed_onnx(model, onnx_model, inputs)
for rep in range(args.repeat):
inputs = (
randomize_input(copy.deepcopy(example_inputs))
if should_randomize_input
else example_inputs
)
if torch.cuda.device_count() > 1:
# Manually set correct torch.cuda.current_device to ensure torch.cuda.synchronize() works as intended.
# When there are more than 1 cuda devices, the first one is used for pytorch eager.
# The second one is used for onnx ort.
torch.cuda.set_device(0)
timings[rep, 0], expected_output = timed(
model,
model_iter_fn,
inputs,
return_result=True,
times=times,
collect_outputs=args.collect_outputs,
)
if torch.cuda.device_count() > 1:
# Manually set correct torch.cuda.current_device to ensure torch.cuda.synchronize() works as intended.
# When there are more than 1 cuda devices, the first one is used for pytorch eager.
# The second one is used for onnx ort.
torch.cuda.set_device(1)
timings[rep, 1], actual_output = timed_onnx(model, onnx_model, inputs)
pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue
median = np.median(timings, axis=0)
speedup = median[0] / median[1]
if args.dump_raw_metrics:
np.save(
f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy",
timings,
)
headers = ["dev", "name", "batch_size", "speedup", "abs_latency"]
row = [
current_device,
current_name,
current_batch_size,
float(speedup),
median[1] * 1000,
]
if "compilation_latency" in kwargs:
headers = headers + ["compilation_latency", "compression_ratio"]
row.append(kwargs["compilation_latency"])
row.append(kwargs["compression_ratio"])
write_outputs(
output_filename,
headers,
row,
)
headers, data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True)
assert (
output_filename.find(".csv") > 0
), f"expected output_filename to be a .csv, but got {output_filename}"
write_outputs(
output_filename[:-4] + "_compilation_metrics.csv",
["dev", "name", "batch_size"] + headers,
[current_device, current_name, current_batch_size] + data,
)
return format_speedup(speedup, pvalue, is_correct=is_correct)
def overhead_experiment(*args, model_iter_fn):
"""
Measure overheads of TorchDynamo by running with no backend (only
eager+FX), and reporting speedup/slowdown over eager.
Writes to ./overheads.csv
"""
return speedup_experiment(*args, model_iter_fn)
def print_fx(gm, example_inputs):
print(gm.graph)
return gm
def print_aten_ops(gm, example_inputs):
from functorch.compile import aot_module
def trace_printer(gm, _):
print(gm.graph)
return gm
return aot_module(gm, fw_compiler=trace_printer, bw_compiler=trace_printer)
def baselines(models, model_iter_fn, example_inputs, args):
"""
Common measurement code across all baseline experiments.
"""
models = list(models)
for idx, (name, model) in enumerate(models):
if idx == 0:
result0 = model_iter_fn(model, example_inputs)
elif model is not None:
try:
result = model_iter_fn(model, example_inputs)
if same(result0, result):
continue
print(name, "is INCORRECT")
except Exception:
log.exception("error checking %s", name)
models[idx] = (name, None)
timings = np.zeros((args.repeat, len(models)), np.float64)
timings.fill(1.0e10)
for rep in range(args.repeat):
for idx, (name, model) in enumerate(models):
if model is not None:
try:
timings[rep, idx] = timed(model, model_iter_fn, example_inputs)
except Exception:
pass
pvalue = [
ttest_ind(timings[:, 0], timings[:, i]).pvalue
for i in range(1, timings.shape[1])
]
median = np.median(timings, axis=0)
speedup = median[0] / median[1:]
for idx, (name, model) in enumerate(models[1:]):
if model is None:
speedup[idx] = 0.0
result = " ".join(
[
format_speedup(s, p, m is not None)
for s, p, m in zip(speedup, pvalue, [m for n, m in models[1:]])
]
)
write_outputs(
output_filename,
("dev", "name", "batch_size") + tuple(n for n, m in models[1:]),
[current_device, current_name, current_batch_size]
+ [f"{x:.4f}" for x in speedup],
)
return result
def xla(args, model_iter_fn, model, example_inputs):
xla_dev = xm.xla_device(devkind=current_device)
model_xla = copy.deepcopy(model).to("cpu").to(device=xla_dev)
example_inputs_xla = tree_map_only(
torch.Tensor, lambda x: x.to("cpu").to(device=xla_dev), example_inputs
)
for _ in range(3): # warmup
timed(model, model_iter_fn, example_inputs)
timed(model_xla, model_iter_fn, example_inputs_xla)
timings = np.zeros((args.repeat, 2), np.float64)
timings.fill(1.0e10)
for rep in range(args.repeat):
timings[rep, 0] = timed(model, model_iter_fn, example_inputs)
timings[rep, 1] = timed(model_xla, model_iter_fn, example_inputs_xla)
pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue
time_baseline, time_xla = np.median(timings, axis=0)
speedup = time_baseline / time_xla
write_outputs(
output_filename,
("dev", "name", "batch_size", "speedup", "time_baseline", "time_xla"),
[
current_device,
current_name,
current_batch_size,
speedup,
time_baseline,
time_xla,
],
)
return format_speedup(speedup, pvalue)
def try_script(model, example_inputs):
try:
return torch.jit.script(model)
except Exception:
return None
def _produce_dynamic_shapes_for_export(path, x):
# mark_dynamic() is ignored for export.
# use this to produce dynamic_shapes spec instead.
from torch.export.dynamic_shapes import Dim
if not isinstance(x, torch.Tensor):
return None
return {i: Dim.AUTO for i in getattr(x, "_dynamo_dynamic_indices", {})}
class AOTInductorModelCache:
cache = {}
@classmethod
def load(cls, model, example_inputs):
import torch._inductor
import torch.export._trace
from torch.export.dynamic_shapes import _tree_map_with_path
key = weakref.ref(model)
if key not in cls.cache:
# Register the output dataclass to pytree
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
with torch.no_grad():
# copy.deepcopy is required to prevent any surprising side-effect,
# see https://github.com/pytorch/pytorch/issues/113029
example_outputs = copy.deepcopy(model)(*example_args, **example_kwargs)
if pytree._is_namedtuple_instance(example_outputs):
typ = type(example_outputs)
pytree._register_namedtuple(
typ,
serialized_type_name=f"{typ.__module__}.{typ.__name__}",
)
else:
_register_dataclass_output_as_pytree(example_outputs)
combined_args = tuple(example_args) + tuple(example_kwargs.values())
dynamic_shapes = _tree_map_with_path(
_produce_dynamic_shapes_for_export, combined_args
)
ep = torch.export.export(
model,
example_args,
example_kwargs,
dynamic_shapes=dynamic_shapes,
strict=False,
)
with torch.no_grad():
package_path = torch._inductor.aoti_compile_and_package(ep) # type: ignore[arg-type]
cls.cache[key] = torch._inductor.aoti_load_package(package_path)
return cls.cache[key]
def export(model, example_inputs):
from torch.export.dynamic_shapes import _tree_map_with_path
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
example_outputs = model(*example_args, **example_kwargs)
_register_dataclass_output_as_pytree(example_outputs)
combined_args = tuple(example_args) + tuple(example_kwargs.values())
dynamic_shapes = _tree_map_with_path(
_produce_dynamic_shapes_for_export, combined_args
)
ep = torch.export.export(
model, example_args, example_kwargs, dynamic_shapes=dynamic_shapes
)
def opt_export(_, example_inputs):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
return ep.module()(*example_args, **example_kwargs)
return opt_export
def export_aot_inductor(model, example_inputs):
optimized = AOTInductorModelCache.load(model, example_inputs)
def opt_aot_inductor(_, example_inputs, collect_outputs=False):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
return optimized(*example_args, **example_kwargs)
return opt_aot_inductor
def download_retry_decorator(download_fn):
"""
Decorator function for applying retry logic to a download function.
The wrapped function will be called up to 5 times and raises an exception if the function fails each time.
After each unsuccessful attempt, there is a delay before the next attempt, which is increased linearly with the number of tries.
Usage:
@download_retry_decorator
def download_function(model_name: str):
# download logic goes here
"""
@functools.wraps(download_fn)
def wrapper(self, *args, **kwargs) -> Any:
tries = 0
total_allowed_tries = MAX_DOWNLOAD_ATTEMPTS
while tries <= total_allowed_tries:
try:
model = download_fn(self, *args, **kwargs)
return model
except Exception as e:
tries += 1
if tries <= total_allowed_tries:
wait = tries * 30
print(
f"Failed to load model: {e}. Trying again ({tries}/{total_allowed_tries}) after {wait}s"
)
time.sleep(wait)
else:
raise RuntimeError( # noqa: B904
f"Failed to load model '{args}' with following error(s): {str(e)}."
)
return wrapper
class OnnxModel(abc.ABC):
TORCH_TO_NUMPY_DTYPE = {
torch.float16: np.float16,
torch.float32: np.float32,
torch.float64: np.float64,
torch.uint8: np.uint8,
torch.int8: np.int8,
torch.int16: np.int16,
torch.int32: np.int32,
torch.int64: np.longlong,
torch.bool: np.bool_,
}
_COMPILER_NAME: str
def __init__(
self,
output_directory,
model,
example_inputs,
dynamic_shapes: bool,
copy_before_export: bool = False,
use_experimental_patch: bool = False,
):
"""The abstract class for exporting ONNX model.
Args:
output_directory: output path
model: model
example_inputs: example inputs for exporting
dynamic_shapes (bool): Whether to export the model with dynamic shapes.
copy_before_export (bool,): copy before export. Defaults to False.
use_experimental_patch (bool): Whether to apply torch_onnx patch which exports
with torch.export and onnx ir. Defaults to False.
"""
model_name = current_name
self.copy_before_export = copy_before_export
self.use_experimental_patch = use_experimental_patch
# NOTE: torch_onnx patch is using OnnxModelFromTorchScript to export ONNX model.
if self.use_experimental_patch:
self._COMPILER_NAME = "torch_onnx_patch"
self.model_dir = self._generate_onnx_model_directory(
output_directory, self._COMPILER_NAME, model_name
)
self.model_path = str(
self.model_dir / f"{model_name}_{self._COMPILER_NAME}.onnx"
)
def _determine_deepcopy_target_device(self):
if current_device == "cpu":
target_device = "cpu"
else:
if torch.cuda.device_count() > 1:
# Copy to another cuda device to avoid OOM.
target_device = "cuda:1"
else:
target_device = "cuda"
return target_device
def deepcopy_model_and_inputs_to_device(self, model, example_inputs, target_device):
# Deepcopy model before export to avoid modification to baseline model.
# To avoid OOM, the model is first moved to CPU. Both models are then moved to device.
model_device = next(model.parameters()).device
model.to("cpu")
model_copy = copy.deepcopy(model).to(target_device)
model.to(model_device)
target_device_example_inputs = tree_map_only(
torch.Tensor, lambda x: x.to(device=target_device), example_inputs
)
return model_copy, target_device_example_inputs
@classmethod
def _generate_onnx_model_directory(
cls, output_directory: str, compiler_name: str, model_name: str
) -> Path:
model_path = Path(
output_directory,
".onnx_models",
model_name,
compiler_name,
)
if model_path.exists() and model_path.is_dir():
shutil.rmtree(model_path)
model_path.mkdir(parents=True, exist_ok=True)
return model_path
@abc.abstractmethod
def format_pt_inputs(self, pt_inputs: Any) -> Sequence[torch.Tensor]: ...
@abc.abstractmethod
def format_pt_outputs(self, pt_outputs: Any) -> Sequence[torch.Tensor]: ...
def adapt_pt_inputs_to_onnx(self, pt_inputs) -> Mapping[str, npt.NDArray]:
pt_inputs = self.format_pt_inputs(pt_inputs)
return {
ort_input.name: pt_input.cpu().numpy()
for ort_input, pt_input in zip(self.onnx_session.get_inputs(), pt_inputs)
}
def adapt_onnx_outputs_to_pt(self, onnx_outputs: List[npt.NDArray]) -> Any:
pt_outputs = [
torch.from_numpy(onnx_output).to(current_device)
for onnx_output in onnx_outputs
]
if len(pt_outputs) == 1:
return pt_outputs[0]
return pt_outputs
def _init_ort_session(self, model_path: str):
import onnxruntime
if current_device == "cpu":
ort_providers = ["CPUExecutionProvider"]
else:
# NOTE(bowbao): Reduce OOM by running ORT on another gpu.
# TODO(bowbao): This works to avoid OOM, but performance is surprisingly very bad.
cuda_provider_options = {
"device_id": 1 if torch.cuda.device_count() > 1 else 0,
}
ort_providers = [("CUDAExecutionProvider", cuda_provider_options)]
session_options = onnxruntime.SessionOptions()
session_options.log_severity_level = 3 # Error
ort_session = onnxruntime.InferenceSession(
self.model_path,
providers=ort_providers,
sess_options=session_options,
)
return ort_session
def is_cpu(self) -> bool:
return self.onnx_session.get_providers()[0] == "CPUExecutionProvider"
def cpu(self) -> Self:
self.onnx_session.set_providers(["CPUExecutionProvider"])
return self
def create_outputs(self, *example_outputs):
return tuple(torch.empty_like(x) for x in example_outputs)
def create_iobinding(self, pt_inputs, example_outputs):
pt_inputs = self.format_pt_inputs(pt_inputs)
example_outputs = self.format_pt_outputs(example_outputs)
iobinding = self.onnx_session.io_binding()
args = [arg.contiguous() for arg in pt_inputs]
for ort_input, arg in zip(self.onnx_session.get_inputs(), args):
# NOTE: Run ORT on another cuda device to reduce OOM.
if torch.cuda.device_count() > 1:
arg = arg.detach().to("cuda:1")
device = arg.device
iobinding.bind_input(
ort_input.name,
device.type,
device.index or 0,
self.TORCH_TO_NUMPY_DTYPE[arg.dtype],
arg.size(),
arg.data_ptr(),
)
outputs = self.create_outputs(*example_outputs)
for ort_output, output in zip(self.onnx_session.get_outputs(), outputs):
if torch.cuda.device_count() > 1:
output = output.detach().to("cuda:1")
device = output.device
iobinding.bind_output(
ort_output.name,
device.type,
device.index or 0,
self.TORCH_TO_NUMPY_DTYPE[output.dtype],
output.size(),
output.data_ptr(),
)
return iobinding, outputs
def run_with_iobinding(self, iobinding, outputs):
# 'outputs' are torch empty tensors binded to 'iobinding'.
self.onnx_session.run_with_iobinding(iobinding)
return outputs
def run_with_onnx_inputs(self, onnx_inputs):
return self.onnx_session.run(None, onnx_inputs)
@classmethod
def save_tensor_data(cls, numpy_tensor, output_path):
from onnx import numpy_helper
proto_tensor = numpy_helper.from_array(numpy_tensor)
with open(output_path, "wb") as f:
f.write(proto_tensor.SerializeToString())
def run_and_serialize_inputs_outputs(self, pt_inputs):
test_data_dir = self.model_dir / "test_data_set_0"
test_data_dir.mkdir(parents=True, exist_ok=True)
onnx_inputs = self.adapt_pt_inputs_to_onnx(pt_inputs)
for i, onnx_input in enumerate(onnx_inputs.values()):
self.save_tensor_data(onnx_input, str(test_data_dir / f"input_{i}.pb"))
onnx_outputs = self.run_with_onnx_inputs(onnx_inputs)
for i, onnx_output in enumerate(onnx_outputs):
self.save_tensor_data(onnx_output, str(test_data_dir / f"output_{i}.pb"))
return self.adapt_onnx_outputs_to_pt(onnx_outputs)
def run(self, pt_inputs):
# NOTE: For CUDA performance testing, use `run_with_iobinding` to exclude memory
# copying overhead for inputs/outputs between cpu and gpu.
# Otherwise perf number is inaccurate.
onnx_inputs = self.adapt_pt_inputs_to_onnx(pt_inputs)
onnx_outputs = self.run_with_onnx_inputs(onnx_inputs)
return self.adapt_onnx_outputs_to_pt(onnx_outputs)
class OnnxModelFromTorchScript(OnnxModel):
"""TorchScript based onnx export. `torch.onnx.export`
TODO(bowbao):
* large model export failed.
Onnx Model is larger than 2GB, but exporter makes decision based pt model size, which is
smaller than 2GB.
* OOM on slightly larger model.
Both pt model and ort inference session are on gpu. Attempt has been made to move ORT to
cuda:1, however ORT perf drop significantly.
For now running everything with batch_size 1 set in launch script.
"""
_COMPILER_NAME = "torchscript"
def __init__(
self, output_directory, model, example_inputs, dynamic_shapes: bool, **kwargs
):
if dynamic_shapes:
raise NotImplementedError("NYI dynamic shapes for OnnxModelFromTorchScript")
super().__init__(
output_directory, model, example_inputs, dynamic_shapes, **kwargs
)
self._export(
model,
example_inputs,
self.model_path,
opset_version=17,
do_constant_folding=False,
verbose=False,
)
self.onnx_session = self._init_ort_session(self.model_path)
def _export(self, model, example_inputs, output_path: str, /, **kwargs) -> None:
if self.copy_before_export:
# Deepcopy model before export to avoid modification to baseline model.
model, example_inputs = self.deepcopy_model_and_inputs_to_device(
model, example_inputs, self._determine_deepcopy_target_device()
)
# Hack for huggingface models (kwargs only).
if isinstance(example_inputs, dict):
class WrapperModel(torch.nn.Module):
def __init__(self, model, keys):
super().__init__()
self.model = model
self.keys = keys
def forward(self, *args):
return self.model(**dict(zip(self.keys, args)))
model = WrapperModel(model, list(example_inputs.keys()))
if self.use_experimental_patch:
import torch_onnx
torch_onnx.patch_torch(
error_report=True,
profile=True,
dump_exported_program=True,
artifacts_dir=os.path.dirname(output_path),
)
else:
# make sure the patch is not in effect
try:
import torch_onnx
torch_onnx.unpatch_torch()
except ImportError:
pass
torch.onnx.export(
model,
self.format_pt_inputs(example_inputs),
output_path,
**kwargs,
)
def format_pt_inputs(self, pt_inputs):
# NOTE(bowbao): For huggingface benchmark, pt_inputs are formatted as dictionary,
# and consumed like `model(**pt_inputs)`.
# For other benchmarks, pt_inputs are formatted as tuple and consumed
# like `model(*pt_inputs)`.
if isinstance(pt_inputs, dict):
pt_inputs = list(pt_inputs.values())
if isinstance(pt_inputs, torch.Tensor):
pt_inputs = (pt_inputs,)
return tuple(arg.contiguous() for arg in pt_inputs)
def format_pt_outputs(self, pt_outputs):
if isinstance(pt_outputs, torch.Tensor):
pt_outputs = (pt_outputs,)
pt_outputs = pytree.tree_leaves(pt_outputs)
# Hack for huggingface model outputs
try:
from transformers import modeling_outputs
except ImportError:
pass
else:
def _to_tuple(x):
if isinstance(x, modeling_outputs.ModelOutput):
return x.to_tuple()
return x
pt_outputs = pytree.tree_map(_to_tuple, pt_outputs)
pt_outputs = pytree.tree_leaves(pt_outputs)
return pt_outputs
class OnnxModelFromDynamo(OnnxModel):
"""Dynamo and Fx based export. `torch.onnx.dynamo_export`."""
_COMPILER_NAME = "dynamo"
def __init__(
self, output_directory, model, example_inputs, dynamic_shapes: bool, **kwargs
):
super().__init__(
output_directory, model, example_inputs, dynamic_shapes, **kwargs
)
self._dynamic_shapes = dynamic_shapes
self._onnx_program = self._export(model, example_inputs, self.model_path)
# Clear the model proto to save memory.
# The model proto is saved to disk and no longer needed from `onnx_program`.
# `onnx_program` is kept for i/o adapter usage.
self._onnx_program.model_proto.Clear()
self.onnx_session = self._init_ort_session(self.model_path)
def _export(
self, model, example_inputs, output_path: str
) -> torch.onnx.ONNXProgram:
if self.copy_before_export:
# Deepcopy model before export to avoid modification to baseline model.
model, example_inputs = self.deepcopy_model_and_inputs_to_device(
model, example_inputs, self._determine_deepcopy_target_device()
)
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
options = torch.onnx.ExportOptions(dynamic_shapes=self._dynamic_shapes)
onnx_program = torch.onnx.dynamo_export(
model, *example_args, **example_kwargs, export_options=options
)
onnx_program.save(output_path)
return onnx_program
def format_pt_inputs(self, pt_inputs):
pt_args, pt_kwargs = _normalize_bench_inputs(pt_inputs)
return self._onnx_program.adapt_torch_inputs_to_onnx(*pt_args, **pt_kwargs)
def format_pt_outputs(self, pt_outputs):
return self._onnx_program.adapt_torch_outputs_to_onnx(pt_outputs)
class OnnxModelFromDynamoAotInline(OnnxModelFromDynamo):
"""Dynamo and Fx based export, with AOT inline post export. `torch.onnx.dynamo_export`."""
_COMPILER_NAME = "dynamo_aot_inline"
def _export(
self, model, example_inputs, output_path: str
) -> torch.onnx.ONNXProgram:
if self.copy_before_export:
# Deepcopy model before export to avoid modification to baseline model.
model, example_inputs = self.deepcopy_model_and_inputs_to_device(
model, example_inputs, self._determine_deepcopy_target_device()
)
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
options = torch.onnx.ExportOptions(dynamic_shapes=self._dynamic_shapes)
onnx_program = torch.onnx.dynamo_export(
model, *example_args, **example_kwargs, export_options=options
)
# Apply AOT inline post export.
# Requires onnx >= 1.15
import onnx
import onnx.inliner
# Workaround for inliner not supporting with models larger than 2GB.
# Save model to disk first separating out external data,
# and load back without external data for inliner to work on.
model_proto = onnx_program.model_proto
onnx.save_model(model_proto, output_path, save_as_external_data=True)
model_proto = onnx.load(output_path, load_external_data=False)
model_proto = onnx.inliner.inline_local_functions(model_proto)
onnx.save_model(model_proto, output_path)
return onnx_program
class OnnxModelFromDynamoAotOptimize(OnnxModelFromDynamo):
"""Dynamo and Fx based export, with AOT optimize post export. `torch.onnx.dynamo_export`."""
_COMPILER_NAME = "dynamo_aot_optimize"
def _export(
self, model, example_inputs, output_path: str
) -> torch.onnx.ONNXProgram:
if self.copy_before_export:
# Deepcopy model before export to avoid modification to baseline model.
model, example_inputs = self.deepcopy_model_and_inputs_to_device(
model, example_inputs, self._determine_deepcopy_target_device()
)
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
options = torch.onnx.ExportOptions(dynamic_shapes=self._dynamic_shapes)
export_output = torch.onnx.dynamo_export(
model, *example_args, **example_kwargs, export_options=options
)
import onnx
from onnxscript.rewriter.onnxruntime import rewrite
model_proto = rewrite(export_output.model_proto)
onnx.save_model(
model_proto,
output_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
)
return export_output
class _OnnxPatch:
@classmethod
def patch_non_tensor_outputs(cls, correct_result, new_result, fp64_outputs):
"""Patch non-tensor outputs to make them comparable with the correct result.
ONNX model always returns a flat tuple of tensors, but the PyTorch model outputs
`correct_result` and `fp64_outputs` can be arbitrary types. This function normalizes
the outputs to make them comparable with the ONNX model output.
"""
try:
from transformers import modeling_outputs
except ImportError:
has_transformers = False
else:
has_transformers = True
if has_transformers and isinstance(
correct_result, modeling_outputs.ModelOutput
):
correct_result = correct_result.to_tuple()
fp64_outputs = fp64_outputs.to_tuple() if fp64_outputs is not None else None
elif type(correct_result).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
"LongformerMaskedLMOutput",
"Instances",
"SquashedNormal",
"Boxes",
"Normal",
"TanhTransform",
"Foo",
"Variable",
):
# Copied from `same` function in `torch._dynamo.utils`
correct_result = [
value
for key in correct_result.__dict__.keys()
if (value := getattr(correct_result, key)) is not None
]
fp64_outputs = (
[
value
for key in fp64_outputs.__dict__.keys()
if (value := getattr(fp64_outputs, key)) is not None
]
if fp64_outputs is not None
else None
)
# Flatten nested tuple of tensors, i.e. past_key_values
correct_result = pytree.tree_leaves(correct_result)
# Hack to put results from different runs on same device.
# This is needed for ONNX CPU fallback benchmark, where PyTorch eager is run on GPU.
# Assuming outputs from a single run are always on same device!
devices = [x.device for x in correct_result if isinstance(x, torch.Tensor)]
assert devices and all(
x == devices[0] for x in devices
), "All tensors must be on same device!"
device = devices[0]
new_result = pytree.tree_leaves(new_result)
new_result = pytree.tree_map(
lambda x: x.to(device=device) if isinstance(x, torch.Tensor) else x,
new_result,
)
fp64_outputs = pytree.tree_leaves(fp64_outputs)
return correct_result, new_result, fp64_outputs
@dataclasses.dataclass
class OnnxExportErrorRow:
device: str
model_name: str
batch_size: int
rule_id: Optional[str] = None
rule_name: Optional[str] = None
diagnostic_level: Optional[str] = None
diagnostic_message: Optional[str] = None
exception_type_name: Optional[str] = None
exception_message: Optional[str] = None
def __post_init__(self):
assert (
self.rule_id is not None
and self.rule_name is not None
and self.diagnostic_level is not None
and self.diagnostic_message is not None
) or self.exception_type_name, (
"Either rule_id, rule_name, diagnostic_level and diagnostic_message "
"must be set or exception_type_name must be set"
)
@property
def headers(self) -> List[str]:
return [field.name for field in dataclasses.fields(self)]
@property
def row(self) -> List[str]:
return [getattr(self, field.name) for field in dataclasses.fields(self)]
class OnnxExportErrorParser:
def __init__(self, device: str, model_name: str, batch_size: int):
self.device = device
self.model_name = model_name
self.batch_size = batch_size
def _qualified_exception_class_name(self, exception: Exception) -> str:
if exception.__class__.__module__ == "builtins":
return exception.__class__.__name__
return f"{exception.__class__.__module__}.{exception.__class__.__name__}"
def parse_diagnostic_context(
self,
diagnostic_context: diagnostics.DiagnosticContext,
) -> Generator[OnnxExportErrorRow, Any, Any]:
from torch.onnx._internal.fx import diagnostics
for diagnostic in diagnostic_context.diagnostics:
if diagnostic.level >= diagnostics.levels.ERROR:
yield OnnxExportErrorRow(
device=self.device,
model_name=self.model_name,
batch_size=self.batch_size,
rule_id=diagnostic.rule.id,
rule_name=diagnostic.rule.name,
diagnostic_level=diagnostic.level.name,
diagnostic_message=diagnostic.message,
)
def parse_exception(self, exception: Exception) -> OnnxExportErrorRow:
return OnnxExportErrorRow(
device=self.device,
model_name=self.model_name,
batch_size=self.batch_size,
exception_type_name=self._qualified_exception_class_name(exception),
exception_message=str(exception),
)
@dataclasses.dataclass
class OnnxContext:
onnx_model: Optional[OnnxModel] = None
def optimize_onnx_ctx(
output_directory: str,
onnx_model_cls: Type[OnnxModel],
run_n_iterations: Callable,
dynamic_shapes: bool = False,
copy_before_export: bool = False,
use_experimental_patch: bool = False,
) -> Callable:
# NOTE(bowbao): This function creates and returns the onnx version of 'run_n_iterations',
# which does the following:
# 1. Export and cache model.
# 2. Create iobinding for ORT.
# 3. Run ORT for n iterations.
# The cached model is stored in 'context' under the returned callable.
context = OnnxContext()
test_data_dumped = False
def run_n_iterations_onnx(model, inputs, n=2):
from torch.onnx._internal import _exporter_legacy
from torch.onnx._internal.fx import diagnostics
# NOTE(bowbao): Capture all export & ort errors and diagnostics.
# Serialize to csv, to be parsed and summarized later by '._onnx/reporter.py'.
# TODO: Accuracy mismatch is not reported here in csv.
assert (
output_filename.find(".csv") > 0
), f"expected output_filename to be a .csv, but got {output_filename}"
output_error_filename = output_filename[:-4] + "_export_error.csv"
parser = OnnxExportErrorParser(current_device, current_name, current_batch_size)
try:
nonlocal context
if context.onnx_model is None:
context.onnx_model = onnx_model_cls(
output_directory,
model,
copy.deepcopy(inputs),
dynamic_shapes=dynamic_shapes,
copy_before_export=copy_before_export,
use_experimental_patch=use_experimental_patch,
)
onnx_model = context.onnx_model
for _ in range(n):
nonlocal test_data_dumped
if not test_data_dumped:
# Serializes inputs and outputs to .pb files for further offline analysis.
# Due to this, this function is not and should not be used for perf measurement.
outputs = onnx_model.run_and_serialize_inputs_outputs(inputs)
test_data_dumped = True
else:
outputs = onnx_model.run(inputs)
return outputs
except _exporter_legacy.OnnxExporterError as e:
# `torch.onnx.dynamo_export` raises error that encloses diagnostics.
diagnostic_context = e.onnx_program.diagnostic_context
for parsed_error in parser.parse_diagnostic_context(diagnostic_context):
write_outputs(
output_error_filename, parsed_error.headers, parsed_error.row
)
if context.onnx_model is not None:
e.onnx_program.save_diagnostics(
f"{context.onnx_model.model_dir}/"
f"{current_onnx_compiler}_{current_name}_{current_device}.sarif"
)
# Check also the raw exception that caused export failure.
# Skip if it is already analyzed by diagnostics.
cause_of_exception = e.__cause__
if not isinstance(
cause_of_exception, diagnostics.RuntimeErrorWithDiagnostic
):
parsed_error = parser.parse_exception(cause_of_exception)
write_outputs(
output_error_filename, parsed_error.headers, parsed_error.row
)
raise
except Exception as e:
# `torch.onnx.export` errors.
# ORT errors.
parsed_error = parser.parse_exception(e)
write_outputs(output_error_filename, parsed_error.headers, parsed_error.row)
raise
run_n_iterations_onnx.context = context
return run_n_iterations_onnx
def read_batch_size_from_file(args, filename, model_name):
batch_size = None
if os.path.exists("benchmarks"):
filename = os.path.join("benchmarks", filename)
assert os.path.exists(filename), filename
with open(filename) as f:
lines = f.readlines()
lines = [i.split(",") for i in lines if len(i.strip()) > 0]
for val in lines:
cur_name, b = val
if model_name == cur_name:
batch_size = int(b)
if batch_size is None:
log.warning("Could not find batch size for %s", model_name)
elif batch_size == -1:
raise RuntimeError(
f"Batch size is unset for {model_name} in {args.batch_size_file}"
)
print(f"batch size: {batch_size}")
return batch_size
class TimeOutException(Exception):
pass
def alarm_handler(signum, frame):
raise TimeOutException
def exit_after(s):
"""
Decorator to raise TimeoutException if the fn is taking more than s seconds
to run.
"""
def outer(fn):
def inner(*args, **kwargs):
signal.signal(signal.SIGALRM, alarm_handler)
signal.alarm(s)
try:
result = fn(*args, **kwargs)
finally:
signal.alarm(0)
return result
return inner
return outer
def get_peak_memory():
return torch.cuda.max_memory_allocated() / 10**9
def null_experiment(args, model_iter_fn, model, example_inputs):
"""
A no-op experiment useful for making sure TorchBenchark alone works properly.
"""
return []
def cast_to(dtype, model, inputs):
# cast model and inputs to fp16
if dtype == torch.float16:
model = model.half()
else:
model = model.to(dtype)
inputs = tree_map(
lambda x: x.to(dtype)
if isinstance(x, torch.Tensor) and x.is_floating_point()
else x,
inputs,
)
return model, inputs
def cast_to_bf16(model, inputs):
return cast_to(torch.bfloat16, model, inputs)
def cast_to_fp16(model, inputs):
return cast_to(torch.float16, model, inputs)
def cast_to_fp64(model, inputs):
return cast_to(torch.float64, model, inputs)
def cast_to_fp32(model, inputs):
return cast_to(torch.float32, model, inputs)
class DummyGradScaler:
def scale(self, loss):
return loss
def get_dynamo_stats():
# TODO: consider deepcopy'ing the entire counters struct and
# adding a helper to do subtraction on it
return collections.Counter(
{
"calls_captured": torch._dynamo.utils.counters["stats"]["calls_captured"],
"unique_graphs": torch._dynamo.utils.counters["stats"]["unique_graphs"],
"graph_breaks": sum(torch._dynamo.utils.counters["graph_break"].values()),
# NB: The plus removes zero counts
"unique_graph_breaks": len(+torch._dynamo.utils.counters["graph_break"]),
"autograd_captures": torch._dynamo.utils.counters["compiled_autograd"][
"captures"
],
"autograd_compiles": torch._dynamo.utils.counters["compiled_autograd"][
"compiles"
],
"cudagraph_skips": torch._dynamo.utils.counters["inductor"][
"cudagraph_skips"
],
}
)
@contextmanager
def maybe_init_distributed(should_init_distributed, rank, world_size, port="6789"):
try:
if should_init_distributed:
torch.cuda.set_device(rank)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = port
torch.distributed.init_process_group(
"nccl", rank=rank, world_size=world_size
)
yield
finally:
if should_init_distributed:
torch.distributed.destroy_process_group()
@contextmanager
def maybe_snapshot_memory(should_snapshot_memory, suffix):
# Enables Memory Snapshot tool for memory deep dives:
# https://pytorch.org/blog/understanding-gpu-memory-1/
try:
if should_snapshot_memory:
torch.cuda.memory._record_memory_history(max_entries=100000)
yield
finally:
if should_snapshot_memory:
try:
torch.cuda.memory._dump_snapshot(
os.path.join(
torch._dynamo.config.base_dir,
f"{output_filename.rstrip('.csv')}_{suffix}.pickle",
)
)
except Exception as e:
logging.error("Failed to save memory snapshot, %s", e)
torch.cuda.memory._record_memory_history(enabled=None)
class BenchmarkRunner:
def __init__(self):
self.model_iter_fn = None
self.grad_scaler = DummyGradScaler()
self.autocast = contextlib.nullcontext
self.autocast_arg = {}
self.optimizer = None
self._args = None
def setup_amp(self, current_device=None):
if self.args.only in self.fp32_only_models:
return
devices = [current_device] if current_device else self.args.devices
if self.args.amp:
# AMP training can lead to small loss values which can undeflow
# gradient values returning in zero gradients. To solve this
# problem, PyTorch introduces GradScaler. GradScaler is a stateful
# structure, that scales the loss values to prevent underflow. Loss
# values are big at the beginning of training (therefore not
# requiring scaling), while loss value tends to be small as network
# starts getting better (requiring scaling). GradScaler manages all
# of this fine tuning, checking the gradients are turning to inf,
# discarding such batches.
# Since we are not running a long iteration, default value of
# init_scale 65536 is going to turn all gradients to inf. Therefore,
# we just use a init_scale of 2.0 for benchmarking purpose.
# Disabling Gradscaler because
# 1) Benchmark setup runs 2 iterations of fwd-bwd. So, not useful.
# 2) Current setup shares grad_scaler for eager and dynamo model,
# which is bad as Gradscaler has state and can adjust the scaling
# factor between eager and dynamo run, making accuracy check
# harder.
# self.grad_scaler = torch.amp.GradScaler(device="cuda", init_scale=2.0)
self.autocast = functools.partial(
torch.amp.autocast, device_type=devices[0]
)
if self.args.amp_dtype:
amp_dtype = (
torch.float16
if self.args.amp_dtype == "float16"
else torch.bfloat16
)
self.autocast_arg["dtype"] = amp_dtype
def init_optimizer(self, name, device, params):
if device == "cuda" and self.args.training and name not in CI_SKIP_OPTIMIZER:
if (name in CI_USE_SGD and self.args.ci) or name in BENCHMARK_USE_SGD:
self.optimizer = torch.optim.SGD(params, lr=0.01, foreach=True)
# Disable multi_tensor_sgd for benchmarking, there isn't a large performance benefit (~1%) to compiling
# this optimizer because it is a single foreach add, and increases compile time.
# After autotuning and fake tensor caching lands, we can enable, becuase the compile time impact will be lower.
# Fake Tensor caching: https://github.com/pytorch/pytorch/pull/113873
# Autotuning: https://github.com/pytorch/pytorch/issues/117447
self.optimizer.step = torch._dynamo.disable(self.optimizer.step)
else:
self.optimizer = torch.optim.Adam(
params, lr=0.01, capturable=True, foreach=True
)
else:
self.optimizer = None
@property
def args(self):
return self._args
@args.setter
def args(self, args):
self._args = args
@property
def skip_models(self):
return set()
@property
def skip_models_for_cuda(self):
return set()
@property
def skip_models_for_cpu(self):
return set()
@property
def skip_models_for_freezing_cpu(self):
return set()
@property
def skip_models_for_freezing_cuda(self):
return set()
@property
def slow_models(self):
return set()
@property
def very_slow_models(self):
return set()
@property
def non_deterministic_models(self):
return set()
@property
def fp32_only_models(self):
return set()
@property
def force_amp_for_fp16_bf16_models(self):
return set()
@property
def force_fp16_for_bf16_models(self):
return set()
@property
def skip_not_suitable_for_training_models(self):
return set()
@property
def failing_torchinductor_models(self):
return set()
@property
def failing_fx2trt_models(self):
return set()
@property
def skip_accuracy_checks_large_models_dashboard(self):
return set()
@property
def skip_accuracy_check_as_eager_non_deterministic(self):
return set()
@property
def skip_multiprocess_models(self):
return set()
@property
def skip_models_due_to_control_flow(self):
return set()
@property
def guard_on_nn_module_models(self):
return set()
@property
def inline_inbuilt_nn_modules_models(self):
return set()
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
raise NotImplementedError
@property
def equal_nan(self):
equal_nan = True
if self.args.float32:
equal_nan = False
return equal_nan
def use_larger_multiplier_for_smaller_tensor(self, name):
return False
def iter_models(self, args):
for model_name in self.iter_model_names(args):
for device in args.devices:
try:
yield self.load_model(
device,
model_name,
batch_size=args.batch_size,
)
except NotImplementedError:
continue # bad benchmark implementation
def deepcopy_model(self, model):
return copy.deepcopy(model)
def cast_based_on_args(self, model, example_inputs):
if self.args.float32 or self.args.only in self.fp32_only_models:
if not self.args.float32:
log.warning("Model %s supports float32 only", self.args.only)
model, example_inputs = cast_to_fp32(model, example_inputs)
elif self.args.float16:
if self.args.only in self.force_amp_for_fp16_bf16_models:
log.warning(
"Model %s does not support float16, running with amp instead",
self.args.only,
)
self.args.amp = True
self.setup_amp()
else:
model, example_inputs = cast_to_fp16(model, example_inputs)
elif self.args.bfloat16:
if self.args.only in self.force_amp_for_fp16_bf16_models:
log.warning(
"Model %s does not support bfloat16, running with amp instead",
self.args.only,
)
self.args.amp = True
self.setup_amp()
elif self.args.only in self.force_fp16_for_bf16_models:
log.warning(
"Model %s does not support bfloat16, running with float16 instead",
self.args.only,
)
model, example_inputs = cast_to_fp16(model, example_inputs)
else:
model, example_inputs = cast_to_bf16(model, example_inputs)
return model, example_inputs
def validate_model(self, model, example_inputs):
"""
Runs the eager model with example inputs to ensure that eager passes.
"""
model = self.deepcopy_model(model)
example_inputs = clone_inputs(example_inputs)
model, example_inputs = self.cast_based_on_args(model, example_inputs)
try:
self.model_iter_fn(model, example_inputs)
except Exception as e:
raise RuntimeError("Eager run failed") from e
def maybe_cast(self, model, example_inputs):
model, example_inputs = self.cast_based_on_args(model, example_inputs)
return model, example_inputs
def decay_batch_exp(self, batch_size, factor=0.5, divisor=2):
out_batch_size = batch_size * factor
if out_batch_size > divisor:
out_batch_size = (out_batch_size + 1) // divisor * divisor
else:
out_batch_size = batch_size - 1
return max(0, int(out_batch_size))
def batch_size_finder(self, device, model_name, initial_batch_size=1024):
batch_size = initial_batch_size
while batch_size >= 1:
empty_gpu_cache(current_device)
try:
device, name, model, example_inputs, _ = self.load_model(
device,
model_name,
batch_size,
)
self.model_iter_fn(model, example_inputs)
return batch_size
except RuntimeError as e:
error_str = str(e)
if "channels_last" in error_str:
break
batch_size = self.decay_batch_exp(batch_size)
return 1
def run_n_iterations(self, mod, inputs):
n = self.args.iterations
for _ in range(n - 1):
self.model_iter_fn(mod, inputs, collect_outputs=False)
return self.model_iter_fn(mod, inputs, collect_outputs=True)
@torch._disable_dynamo(recursive=True)
def optimizer_zero_grad(self, mod):
if self.optimizer is not None:
self.optimizer.zero_grad(True)
else:
mod.zero_grad(True)
def optimizer_step(self):
if self.optimizer is not None:
self.optimizer.step()
def get_benchmark_indices(self, length):
start = self._args.partition_id * (length // self._args.total_partitions)
end = (
(self._args.partition_id + 1) * (length // self._args.total_partitions)
if self._args.partition_id < self._args.total_partitions - 1
else length
)
return start, end
def get_fsdp_auto_wrap_policy(self, model_name: str):
from diffusers.models.transformer_2d import Transformer2DModel
from torchbenchmark.models.nanogpt.model import Block
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from transformers.models.t5.modeling_t5 import T5Block
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
from torch.distributed.fsdp.wrap import (
ModuleWrapPolicy,
size_based_auto_wrap_policy,
)
# handcrafted wrap policy
MODEL_FSDP_WRAP = {
"stable_diffusion_unet": (Transformer2DModel,),
"hf_T5": (T5Block,),
"hf_T5_base": (T5Block,),
"hf_T5_large": (T5Block,),
"hf_Whisper": (WhisperEncoderLayer,),
"llama_v2_7b_16h": (LlamaDecoderLayer,),
"nanogpt": (Block,),
}
if model_name not in MODEL_FSDP_WRAP:
# default to using wrap policy based on module size
return functools.partial(
size_based_auto_wrap_policy, recurse=True, min_num_params=int(1e5)
)
return ModuleWrapPolicy(MODEL_FSDP_WRAP[model_name])
def deepcopy_and_maybe_parallelize(self, model):
model = self.deepcopy_model(model)
if self.args.ddp:
assert (
torch.distributed.is_available()
), "Can't use DDP without a distributed enabled build"
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model, find_unused_parameters=True)
elif self.args.fsdp:
assert (
torch.distributed.is_available()
), "Can't use FSDP without a distributed enabled build"
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
)
if self.args.float16:
dtype = torch.float16
elif self.args.bfloat16:
dtype = torch.bfloat16
else:
dtype = torch.float32
mp_policy = MixedPrecision(
param_dtype=dtype,
# Gradient communication precision.
reduce_dtype=dtype,
# Buffer precision.
buffer_dtype=dtype,
)
model = FSDP(
model,
use_orig_params=True,
device_id=torch.cuda.current_device()
if self.args.devices[-1] == "cuda"
else None,
mixed_precision=mp_policy,
limit_all_gathers=True,
auto_wrap_policy=self.get_fsdp_auto_wrap_policy(self.args.only),
)
return model
def check_accuracy(
self, name, model, example_inputs, optimize_ctx, experiment, tag
):
"""
Checks accuracy.
1) Collect the outputs with fp64 datatype. This is useful for error checking.
2) Checks if eager itself has variations.
"""
start_stats = get_dynamo_stats()
def record_status(accuracy_status, dynamo_start_stats):
"""
Records the status in the csv file
"""
if current_name in self.non_deterministic_models:
if accuracy_status in (
"pass",
"eager_two_runs_differ",
"fail_accuracy",
):
accuracy_status = "pass"
headers = ["dev", "name", "batch_size", "accuracy"]
fields = [current_device, current_name, current_batch_size, accuracy_status]
if tag is not None:
headers.insert(3, "tag")
fields.insert(3, tag)
o_headers = list(headers)
o_fields = list(fields)
dynamo_stats = get_dynamo_stats()
dynamo_stats.subtract(dynamo_start_stats)
for k, v in dynamo_stats.items():
headers.append(k)
fields.append(v)
write_outputs(output_filename, headers, fields)
output_signpost(
dict(zip(o_headers, o_fields)),
self.args,
self.suite_name,
)
return accuracy_status
if name in self.skip_accuracy_checks_large_models_dashboard:
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
# Skip all accuracy check for the torchao backend
if self.args.backend == "torchao":
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
with self.pick_grad(name, self.args.training):
# Collect the fp64 reference outputs to be used later for accuracy checking.
fp64_outputs = None
model_fp64 = None
inputs_fp64 = None
try:
model_fp64, inputs_fp64 = cast_to_fp64(
self.deepcopy_and_maybe_parallelize(model),
clone_inputs(example_inputs),
)
self.init_optimizer(name, current_device, model_fp64.parameters())
fp64_outputs = self.run_n_iterations(model_fp64, inputs_fp64)
fp64_outputs = tree_map(
lambda x: x.to(torch.float64)
if isinstance(x, torch.Tensor) and x.is_floating_point()
else x,
fp64_outputs,
)
except Exception:
log.warning(
"fp64 golden ref were not generated for %s. Setting accuracy check to cosine",
name,
)
self.args.cosine = True
fp64_outputs = None
finally:
del model_fp64, inputs_fp64
empty_gpu_cache(current_device)
tolerance, cos_similarity = self.get_tolerance_and_cosine_flag(
self.args.training, current_device, name
)
# Cast the model to float16/float32 as necessary
model, example_inputs = self.maybe_cast(model, example_inputs)
accuracy_status = "pass"
# Get results of native pytorch
reset_rng_state()
model_copy = None
try:
model_copy = self.deepcopy_and_maybe_parallelize(model)
self.init_optimizer(name, current_device, model_copy.parameters())
correct_result = self.run_n_iterations(
model_copy, clone_inputs(example_inputs)
)
except Exception as e:
accuracy_status = (
"eager_1st_run_OOM"
if isinstance(e, torch.cuda.OutOfMemoryError)
else "eager_1st_run_fail"
)
log.exception("")
return record_status(accuracy_status, dynamo_start_stats=start_stats)
finally:
del model_copy
empty_gpu_cache(current_device)
# Rerun native pytorch
reset_rng_state()
model_copy = None
try:
model_copy = self.deepcopy_and_maybe_parallelize(model)
self.init_optimizer(name, current_device, model_copy.parameters())
correct_rerun_result = self.run_n_iterations(
model_copy, clone_inputs(example_inputs)
)
except Exception as e:
accuracy_status = (
"eager_2nd_run_OOM"
if isinstance(e, torch.cuda.OutOfMemoryError)
else "eager_2nd_run_fail"
)
log.exception("")
return record_status(accuracy_status, dynamo_start_stats=start_stats)
finally:
del model_copy
empty_gpu_cache(current_device)
# Two eager runs should have exactly same result
is_same = True
try:
if (
name not in self.skip_accuracy_check_as_eager_non_deterministic
and not same(
correct_result,
correct_rerun_result,
fp64_ref=None,
cos_similarity=False,
tol=0,
equal_nan=self.equal_nan,
use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor(
name
),
)
):
is_same = False
except Exception:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
if not is_same:
accuracy_status = "eager_two_runs_differ"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
correct_rerun_result = None
# Run with Dynamo
reset_rng_state()
torch._dynamo.reset()
model_copy = None
try:
model_copy = self.deepcopy_and_maybe_parallelize(model)
self.init_optimizer(name, current_device, model_copy.parameters())
if self.args.export or self.args.export_aot_inductor:
# apply export on module directly
# no need for n iterations
# the logic should be the same to self.model_iter_fn (forward_pass)
with self.autocast(**self.autocast_arg):
optimized_model_iter_fn = optimize_ctx(
model_copy, example_inputs
)
new_result = optimized_model_iter_fn(model_copy, example_inputs)
else:
optimized_model_iter_fn = optimize_ctx(self.run_n_iterations)
with maybe_enable_compiled_autograd(
self.args.compiled_autograd,
fullgraph=self.args.nopython,
dynamic=self.args.dynamic_shapes,
):
new_result = optimized_model_iter_fn(model_copy, example_inputs)
except Exception as e:
log.exception("")
print(
"TorchDynamo optimized model failed to run because of following error"
)
accuracy_status = (
"OOM"
if isinstance(e, torch.cuda.OutOfMemoryError)
else "fail_to_run"
)
return record_status(accuracy_status, dynamo_start_stats=start_stats)
finally:
del model_copy
if name in self.skip_accuracy_check_as_eager_non_deterministic:
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
if (
current_onnx_compiler == "torchscript"
or current_onnx_compiler == "dynamo"
):
# Workaround for ONNX for non-tensor outputs
(
correct_result,
new_result,
fp64_outputs,
) = _OnnxPatch.patch_non_tensor_outputs(
correct_result, new_result, fp64_outputs
)
# Relax tolerance for ONNX cuda
if current_device == "cuda":
tolerance = 1e-2
# TODO: store correct_result into the dumped file for offline onnx model validation.
# The downside and potential problem, is that the output formats may be different.
# E.g., the output order might not match, None might be part of output, etc.
try:
if self.args.training and self.args.amp:
if process_fn := self.get_output_amp_train_process_func.get(
name, None
):
correct_result = process_fn(correct_result)
new_result = process_fn(new_result)
fp64_outputs = process_fn(fp64_outputs)
if not same(
correct_result,
new_result,
fp64_outputs,
equal_nan=self.equal_nan,
use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor(
name
),
cos_similarity=cos_similarity,
tol=tolerance,
):
is_same = False
except Exception:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
if not is_same:
if self.args.skip_accuracy_check:
accuracy_status = "pass_due_to_skip"
else:
accuracy_status = "fail_accuracy"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
return record_status(accuracy_status, dynamo_start_stats=start_stats)
def check_tolerance(
self, name, model, example_inputs, optimize_ctx, base_device="cpu"
):
"""
Checks tolerance based on https://pytorch.org/docs/stable/generated/torch.allclose.html.
"""
tolerance_status = "pass"
if name in self.skip_accuracy_checks_large_models_dashboard:
tolerance_status = "pass_due_to_skip"
return tolerance_status
# Cast the model to float16/float32 as necessary
model, example_inputs = self.maybe_cast(model, example_inputs)
with self.pick_grad(name, self.args.training):
# Get results of native pytorch
reset_rng_state()
model_copy = copy.deepcopy(model)
model_copy = model_copy.to(base_device)
example_inputs_copy = copy.deepcopy(example_inputs)
example_inputs_copy = tree_map(
lambda x: x.to(base_device), example_inputs_copy
)
self.init_optimizer(name, base_device, model_copy.parameters())
correct_result = self.run_n_iterations(model_copy, example_inputs_copy)
# Run with Dynamo
# Sometime CI fails with random triton compilation failure which will be skipped for now
# TODO: revisit this after switching to new Triton runtime
reset_rng_state()
torch._dynamo.reset()
try:
self.init_optimizer(name, current_device, model.parameters())
optimized_model_iter_fn = optimize_ctx(self.run_n_iterations)
new_result = optimized_model_iter_fn(model, example_inputs)
except Exception:
log.exception("")
print(
"TorchDynamo optimized model failed to run because of following error"
)
return "fail_to_run"
def dump_max_mean_values(tol, ref, res):
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
for refi, resi in zip(ref, res):
dump_max_mean_values(tol, refi, resi)
elif isinstance(ref, dict):
for k in ref.keys():
dump_max_mean_values(tol, ref[k], res[k])
elif isinstance(ref, torch.Tensor):
res = res.to(base_device)
t = torch.abs(ref - res) / (1 + torch.abs(ref))
tol.append(t.flatten().to(torch.float32))
return tol
tol = []
dump_max_mean_values(tol, correct_result, new_result)
tol = torch.cat(tol)
tol = torch.tensor(tol)
max = torch.max(tol)
mean = torch.mean(tol)
div = torch.std(tol)
headers = ["dev", "name", "batch_size", "max", "mean", "std"]
fields = [
current_device,
current_name,
current_batch_size,
max.item(),
mean.item(),
div.item(),
]
write_outputs(output_filename, headers, fields)
return tolerance_status
def run_performance_test_non_alternate(
self, name, model, example_inputs, optimize_ctx, experiment, tag=None
):
"Run performance test in non-alternately."
assert (
experiment.func is latency_experiment
), "Must run with latency_experiment."
def warmup(fn, model, example_inputs, mode, niters=10):
peak_mem = 0
start_stats = get_dynamo_stats()
try:
if current_device == "cuda":
torch.cuda.reset_peak_memory_stats()
empty_gpu_cache(current_device)
t0 = time.perf_counter()
for _ in range(niters):
fn(model, example_inputs)
t1 = time.perf_counter()
latency = t1 - t0
if current_device == "cuda":
peak_mem = get_peak_memory()
elif current_device == "cpu":
total = psutil.virtual_memory().total
percentage = psutil.Process(os.getpid()).memory_percent()
peak_mem = percentage * total / 10**9
except Exception:
log.exception("Backend %s failed in warmup()", mode)
write_csv_when_exception(
self.args, current_name, "warmup_failed", current_device
)
output_signpost({}, self.args, self.suite_name, error="warmup_failed")
return sys.exit(-1)
dynamo_stats = get_dynamo_stats()
dynamo_stats.subtract(start_stats)
return latency, peak_mem, dynamo_stats
# Cast the model to float16/float32 as necessary
model, example_inputs = self.maybe_cast(model, example_inputs)
# Use distributed wrapping as necessary
model = self.deepcopy_and_maybe_parallelize(model)
self.init_optimizer(name, current_device, model.parameters())
# The self.autocast context is needed for the model we export with aot_compile,
# similar to what we do in the check_accuracy function
ctx = (
self.autocast(**self.autocast_arg)
if self.args.export_aot_inductor
else contextlib.nullcontext()
)
with self.pick_grad(name, self.args.training), ctx:
ok, total = Stats.reset_counters()
experiment_kwargs = {}
if tag is not None:
experiment_kwargs["tag"] = tag
results = []
with maybe_snapshot_memory(
self.args.snapshot_memory, f"eager_{self.args.only}"
):
eager_latency, eager_peak_mem, _ = warmup(
self.model_iter_fn, model, example_inputs, "eager"
)
if self.args.use_warm_peak_memory:
_, eager_peak_mem, _ = warmup(
self.model_iter_fn, model, example_inputs, "eager", niters=1
)
baseline_timings = experiment(
model, example_inputs, mark="expected", **experiment_kwargs
)
if self.args.export_aot_inductor:
optimized_model_iter_fn = optimize_ctx
else:
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
with maybe_enable_compiled_autograd(
self.args.compiled_autograd,
fullgraph=self.args.nopython,
dynamic=self.args.dynamic_shapes,
), maybe_snapshot_memory(
self.args.snapshot_memory, f"compiled_{self.args.only}"
):
dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup(
optimized_model_iter_fn, model, example_inputs, "dynamo"
)
if self.args.use_warm_peak_memory:
_, dynamo_peak_mem, _ = warmup(
optimized_model_iter_fn,
model,
example_inputs,
"dynamo",
niters=1,
)
if self.args.profile_dynamo_cache_lookup:
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU]
) as prof:
with maybe_enable_compiled_autograd(
self.args.compiled_autograd,
fullgraph=self.args.nopython,
dynamic=self.args.dynamic_shapes,
):
warmup(optimized_model_iter_fn, model, example_inputs, "dynamo")
events = list(
filter(
lambda event: "TorchDynamo Cache Lookup" in event.key,
prof.key_averages(),
)
)
dynamo_cache_lookup_latency = events[0].self_cpu_time_total
compilation_time = dynamo_latency - eager_latency
compression_ratio = (
eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0
)
if self.args.print_memory:
print(
f"memory: eager: {eager_peak_mem:.2f} GB, "
f"dynamo: {dynamo_peak_mem:.2f} GB, "
f"ratio: {compression_ratio:.2f}"
)
if self.args.print_compilation_time:
print(f"Compilation time: {compilation_time:.2f}")
if experiment.func is speedup_experiment:
experiment_kwargs["compilation_latency"] = compilation_time
experiment_kwargs["compression_ratio"] = compression_ratio
experiment_kwargs["eager_peak_mem"] = eager_peak_mem
experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem
experiment_kwargs["dynamo_stats"] = dynamo_stats
if self.args.profile_dynamo_cache_lookup:
experiment_kwargs["cache_lookup_latency"] = (
dynamo_cache_lookup_latency
)
if experiment.func is speedup_experiment_onnx:
experiment = functools.partial(
experiment, optimized_model_iter_fn.context.onnx_model
)
backend_timings = experiment(
model, example_inputs, mark="expected", **experiment_kwargs
)
timings = np.stack((baseline_timings, backend_timings), axis=1)
result_summary = latency_experiment_summary(
self.suite_name, self.args, model, timings, **experiment_kwargs
)
if not hasattr(model, name):
model.name = name
results.append(result_summary)
return " ".join(map(str, results))
def run_performance_test(
self, name, model, example_inputs, optimize_ctx, experiment, tag=None
):
if self.args.xla:
with self.pick_grad(name, self.args.training):
return experiment(*self.maybe_cast(model, example_inputs))
def warmup(fn, model, example_inputs, mode, niters=5):
peak_mem = 0
start_stats = get_dynamo_stats()
try:
if current_device == "cuda":
torch.cuda.reset_peak_memory_stats()
empty_gpu_cache(current_device)
t0 = time.perf_counter()
for _ in range(niters):
fn(model, example_inputs)
t1 = time.perf_counter()
latency = t1 - t0
if current_device == "cuda":
peak_mem = get_peak_memory()
elif current_device == "cpu":
total = psutil.virtual_memory().total
percentage = psutil.Process(os.getpid()).memory_percent()
peak_mem = percentage * total / 10**9
except Exception:
log.exception("Backend %s failed in warmup()", mode)
write_csv_when_exception(
self.args, current_name, "warmup_failed", current_device
)
output_signpost({}, self.args, self.suite_name, error="warmup_failed")
return sys.exit(-1)
dynamo_stats = get_dynamo_stats()
dynamo_stats.subtract(start_stats)
return latency, peak_mem, dynamo_stats
# Cast the model to float16/float32 as necessary
model, example_inputs = self.maybe_cast(model, example_inputs)
# Use distributed wrapping as necessary
model = self.deepcopy_and_maybe_parallelize(model)
self.init_optimizer(name, current_device, model.parameters())
# The self.autocast context is needed for the model we export with aot_compile,
# similar to what we do in the check_accuracy function
ctx = (
self.autocast(**self.autocast_arg)
if self.args.export_aot_inductor
else contextlib.nullcontext()
)
with self.pick_grad(name, self.args.training), ctx:
ok, total = Stats.reset_counters()
experiment_kwargs = {}
if tag is not None:
experiment_kwargs["tag"] = tag
results = []
with maybe_snapshot_memory(
self.args.snapshot_memory, f"eager_{self.args.only}"
):
eager_latency, eager_peak_mem, _ = warmup(
self.model_iter_fn, model, example_inputs, "eager"
)
if self.args.use_warm_peak_memory:
_, eager_peak_mem, _ = warmup(
self.model_iter_fn, model, example_inputs, "eager", niters=1
)
if self.args.export_aot_inductor:
optimized_model_iter_fn = optimize_ctx
else:
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
with maybe_enable_compiled_autograd(
self.args.compiled_autograd,
fullgraph=self.args.nopython,
dynamic=self.args.dynamic_shapes,
), maybe_snapshot_memory(
self.args.snapshot_memory, f"compiled_{self.args.only}"
):
dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup(
optimized_model_iter_fn, model, example_inputs, "dynamo"
)
if self.args.use_warm_peak_memory:
_, dynamo_peak_mem, _ = warmup(
optimized_model_iter_fn,
model,
example_inputs,
"dynamo",
niters=1,
)
if self.args.profile_dynamo_cache_lookup:
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU]
) as prof:
with maybe_enable_compiled_autograd(
self.args.compiled_autograd,
fullgraph=self.args.nopython,
dynamic=self.args.dynamic_shapes,
):
warmup(optimized_model_iter_fn, model, example_inputs, "dynamo")
events = list(
filter(
lambda event: "TorchDynamo Cache Lookup" in event.key,
prof.key_averages(),
)
)
dynamo_cache_lookup_latency = events[0].self_cpu_time_total
compilation_time = dynamo_latency - eager_latency
compression_ratio = (
eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0
)
if self.args.print_memory:
print(
f"memory: eager: {eager_peak_mem:.2f} GB, "
f"dynamo: {dynamo_peak_mem:.2f} GB, "
f"ratio: {compression_ratio:.2f}"
)
if self.args.print_compilation_time:
print(f"Compilation time: {compilation_time:.2f}")
if experiment.func is speedup_experiment:
experiment_kwargs["compilation_latency"] = compilation_time
experiment_kwargs["compression_ratio"] = compression_ratio
experiment_kwargs["eager_peak_mem"] = eager_peak_mem
experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem
experiment_kwargs["dynamo_stats"] = dynamo_stats
if self.args.profile_dynamo_cache_lookup:
experiment_kwargs["cache_lookup_latency"] = (
dynamo_cache_lookup_latency
)
if experiment.func is coverage_experiment:
ok, total = Stats.reset_counters()
results = []
# run with torch._dynamo few times to populate the cache
for _ in range(3):
optimized_model_iter_fn(model, example_inputs)
_, frames_second_pass = Stats.reset_counters() # should be 0
if frames_second_pass > 0:
optimized_model_iter_fn(model, example_inputs)
_, frames_third_pass = Stats.reset_counters() # should be 0
else:
frames_third_pass = 0
results.append(
f"{ok:3}/{total:3} +{frames_third_pass} frames {compilation_time:3.0f}s"
)
if experiment.func is speedup_experiment_onnx:
experiment = functools.partial(
experiment, optimized_model_iter_fn.context.onnx_model
)
if not hasattr(model, name):
model.name = name
results.append(experiment(model, example_inputs, **experiment_kwargs))
return " ".join(map(str, results))
def minify_model(
self,
name,
model,
example_inputs,
optimize_ctx,
experiment,
tag,
):
logging.info("Minifying %s...", name)
os.environ["TORCH_COMPILE_DEBUG"] = "1"
os.environ["TORCHDYNAMO_REPRO_AFTER"] = "dynamo"
os.environ["TORCHDYNAMO_REPRO_LEVEL"] = "4"
self.check_accuracy(name, model, example_inputs, optimize_ctx, experiment, tag)
if self.args.output_directory:
repro_dir = self.args.output_directory
else:
repro_dir = torch._dynamo.config.base_dir
try:
shutil.move("repro.py", f"{repro_dir}/{name}_repro.py")
except OSError:
logging.error("Could not find repro script for model %s", name)
else:
logging.info(
"Repro script for model %s with minified graph saved to %s",
name,
repro_dir,
)
def maybe_preserve_compile_debug(self, name, status):
if (
name in CI_PRESERVE_COMPILE_DEBUG
and status in CI_PRESERVE_COMPILE_DEBUG[name]
):
src_dir = torch._dynamo.utils.get_debug_dir()
if os.path.isdir(src_dir):
dbg_dir = os.path.join(
os.getcwd(), "test", "debug", "torch_compile_debug"
)
dst_dir = os.path.join(dbg_dir, os.path.basename(src_dir))
try:
os.makedirs(dbg_dir, exist_ok=True)
os.rename(src_dir, dst_dir)
log.warning("Moved %s to %s", src_dir, dst_dir)
except OSError:
log.exception("Failed to preserve %s", src_dir)
def run_one_model(
self,
name,
model,
example_inputs,
optimize_ctx,
experiment,
explain=False,
tag=None,
):
mode = "train" if self.args.training else "eval"
msg = f"{current_device:4} {mode:5} {current_name:34} "
if tag:
msg += f" {tag:26}"
print(msg, flush=True)
start_stats = get_dynamo_stats()
if self.args.accuracy:
status = self.check_accuracy(
name, model, example_inputs, optimize_ctx, experiment, tag
)
print(status)
if status == "fail_accuracy" and self.args.minify:
self.minify_model(
name, model, example_inputs, optimize_ctx, experiment, tag
)
elif self.args.tolerance:
status = self.check_tolerance(name, model, example_inputs, optimize_ctx)
print(status)
elif self.args.performance:
if self.args.backend == "torchao":
status = self.run_performance_test_non_alternate(
name, model, example_inputs, optimize_ctx, experiment, tag
)
else:
status = self.run_performance_test(
name, model, example_inputs, optimize_ctx, experiment, tag
)
print(status)
empty_gpu_cache(current_device)
self.maybe_preserve_compile_debug(name, status)
if self.args.timing:
from torch._dynamo.utils import op_count, print_time_report
from torch.utils._stats import simple_call_counter
print_time_report()
stats = "STATS: "
stats = stats + " | ".join(
itertools.chain(
[f"call_* op count: {op_count}"],
(f"{key}:{value}" for key, value in simple_call_counter.items()),
)
)
print(stats)
stats = get_dynamo_stats()
stats.subtract(start_stats)
if explain:
print(
f"Dynamo produced {stats['unique_graphs']} graphs "
f"covering {stats['calls_captured']} ops with "
f"{stats['graph_breaks']} graph breaks ({stats['unique_graph_breaks']} unique)"
)
if explain or self.args.log_graph_breaks or self.args.print_graph_breaks:
filename = f"{output_filename.rstrip('.csv')}_graph_breaks.csv"
def add_double_quotes(x):
# Delimiter because reason could have comma
return f'"{x}"'
for graph_break in graph_break_reasons:
reason = add_double_quotes(graph_break.reason)
user_stack = add_double_quotes(
", ".join([str(x) for x in graph_break.user_stack])
)
write_outputs(
filename,
["model", "reason", "user_stack"],
[current_name, reason, user_stack],
)
if self.args.stats:
Stats.print_summary()
def help(fn):
return fn.__doc__
diff_branch_default = "DIFF-BRANCH-DEFAULT"
def should_diff_branch(args):
return args.diff_branch != diff_branch_default
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"--filter", "-k", action="append", help="filter benchmarks with regexp"
)
parser.add_argument(
"--exclude", "-x", action="append", help="filter benchmarks with regexp"
)
parser.add_argument(
"--exclude-exact", action="append", help="filter benchmarks with exact match"
)
parser.add_argument(
"--total-partitions",
type=int,
default=1,
choices=range(1, 16),
help="Total number of partitions we want to divide the benchmark suite into",
)
parser.add_argument(
"--partition-id",
type=int,
default=0,
help="ID of the benchmark suite partition to be run. Used to divide CI tasks",
)
parser.add_argument(
"--devices", "--device", "-d", action="append", help="cpu or cuda"
)
parser.add_argument("--device-index", help="CUDA device index")
parser.add_argument(
"--repeat", "-n", type=int, default=30, help="number of timing runs"
)
iterations_per_run_help = """
Run this may iterations for each time measurement. This is mainly used for
XLA training. We want to run multiple iterations per measurement so the
tracing and computation for different iteartions can overlap with each
other. This makes sure we have an accurate xla baseline.
"""
parser.add_argument(
"--iterations-per-run", type=int, default=1, help=iterations_per_run_help
)
parser.add_argument(
"--randomize-input",
action="store_true",
help="Whether to randomize the input values. Dimensions will be kept the same.",
)
parser.add_argument(
"--threads",
"-t",
type=int,
help="number of threads to use for eager and inductor",
)
parser.add_argument(
"--nopython", action="store_true", help="Turn graph breaks into errors"
)
parser.add_argument(
"--no-skip",
action="store_true",
help="run models that are in the global SKIP list",
)
parser.add_argument(
"--prims-nvfuser", action="store_true", help="user prims + nvfuser backend"
)
parser.add_argument(
"--dump-raw-metrics",
action="store_true",
help="dump raw timing metrics from speedup experiment",
)
parser.add_argument(
"--log-operator-inputs",
action="store_true",
default=False,
)
parser.add_argument(
"--channels-last",
action="store_true",
default=False,
help="use channels last format",
)
parser.add_argument(
"--batch-size", "--batch_size", type=int, help="batch size for benchmarking"
)
parser.add_argument(
"--iterations", type=int, default=2, help="how many iterations to run"
)
parser.add_argument(
"--batch-size-file", type=str, help="String to load batch size from"
)
parser.add_argument("--cosine", action="store_true", help="use cosine similarity")
parser.add_argument(
"--freezing", action="store_true", help="turn on freezing", default=False
)
parser.add_argument(
"--inductor-config",
"-c",
action="append",
help="key=value in torch._inductor.config",
)
parser.add_argument(
"--ci", action="store_true", help="Flag to tell that its a CI run"
)
parser.add_argument(
"--dashboard", action="store_true", help="Flag to tell that its a Dashboard run"
)
parser.add_argument(
"--skip-fp64-check", action="store_true", help="skip accuracy check using fp64"
)
parser.add_argument(
"--fast", "-f", action="store_true", help="skip slow benchmarks"
)
parser.add_argument(
"--only",
help="""Run just one model from torchbench. Or
specify the path and class name of the model in format like:
--only=path:<MODEL_FILE_PATH>,class:<CLASS_NAME>
Due to the fact that dynamo changes current working directory,
the path should be an absolute path.
The class should have a method get_example_inputs to return the inputs
for the model. An example looks like
```
class LinearModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 10)
def forward(self, x):
return self.linear(x)
def get_example_inputs(self):
return (torch.randn(2, 10),)
```
""",
)
parser.add_argument(
"--multiprocess",
action="store_true",
help="Create n processes based on the number of devices (distributed use case).",
)
parser.add_argument(
"--ddp",
action="store_true",
help="Wraps model in DDP before running it, and uses dynamo DDPOptmizer (graph breaks) by default.",
)
parser.add_argument(
"--fsdp",
action="store_true",
help="""Wraps model in FSDP before running it.
Doesn't recursively wrap, mainly useful for checking dynamo UnspecNNModule compatibility
""",
)
parser.add_argument(
"--optimize-ddp-mode",
type=str,
default="ddp_optimizer",
help="Specify the DDP optimization mode -- the value of torch._dynamo.config.optimize_ddp.",
)
parser.add_argument(
"--distributed-master-port",
default="6789",
help="Port to bind for for torch.distributed. Use the default unless it's conflicting with another user",
)
parser.add_argument(
"--dynamic-shapes",
action="store_true",
help="Runs a dynamic shapes version of the benchmark, if available.",
)
parser.add_argument(
"--propagate-real-tensors",
action="store_true",
help="Capture as much data dependent as you can by unsoundly propagating real tensors",
)
parser.add_argument(
"--dynamic-batch-only",
action="store_true",
help="Only assume batch dimension is dynamic. Implies --dynamic-shapes",
)
parser.add_argument(
"--specialize-int", action="store_true", help="Run with specialize_int=True."
)
parser.add_argument(
"--use-eval-mode",
action="store_true",
help="sets model.eval() to reduce randomness",
)
parser.add_argument(
"--skip-accuracy-check",
action="store_true",
help="keeps running even when accuracy fails",
)
parser.add_argument(
"--generate-aot-autograd-stats",
action="store_true",
help="Generates AOT Autograd stats like how mnay graphs are sent to AOT",
)
parser.add_argument(
"--inductor-settings",
action="store_true",
help="Use same settings as --inductor for baseline comparisons",
)
parser.add_argument(
"--suppress-errors",
action="store_true",
help="Suppress errors instead of raising them",
)
parser.add_argument(
"--output",
help="Overrides the output filename",
)
parser.add_argument(
"--output-directory",
help="Overrides the directory to place output files.",
)
parser.add_argument(
"--disable-output",
action="store_true",
help="Disable writing of output files, e.g., for warm-up runs",
)
parser.add_argument(
"--baseline",
help="Compare with a prior --output",
)
parser.add_argument(
"--part",
default=None,
help="Specify the part of the model to run.",
)
parser.add_argument(
"--export-profiler-trace",
action="store_true",
help="exports trace of kineto profiler",
)
parser.add_argument(
"--profiler-trace-name",
"--profiler_trace_name",
help="Overwrites exported trace name",
)
parser.add_argument(
"--diff-branch",
default=diff_branch_default,
help="delta current branch against given branch.",
)
parser.add_argument(
"--tag", default=None, help="Specify a tag to be included in csv files."
)
parser.add_argument(
"--explain",
action="store_true",
help="print some graph/op statistics during the run, similar to .explain()",
)
parser.add_argument(
"--stats",
action="store_true",
help="print graph counter stats",
)
parser.add_argument(
"--use-warm-peak-memory",
"--use_warm_peak_memory",
action="store_true",
help="Measure peak memory using a warm run to reduce autotuning noise",
)
parser.add_argument(
"--print-memory",
action="store_true",
help="print extra memory statistics",
)
parser.add_argument(
"--print-compilation-time",
action="store_true",
help="print compilation latency",
)
parser.add_argument(
"--print-dataframe-summary",
action="store_true",
help="print dataframe result used for calculating accuracy",
)
parser.add_argument(
"--disable-cudagraphs",
action="store_true",
help="Disables cudagraphs for Inductor",
)
parser.add_argument(
"--disable-split-reductions",
action="store_true",
help="Disables split reductions for Inductor",
)
parser.add_argument(
"--disable-persistent-reductions",
action="store_true",
help="Disables split reductions for Inductor",
)
parser.add_argument(
"--disable-divisible-by-16",
action="store_true",
help="Disables divisible by 16 hint to Triton for Inductor",
)
parser.add_argument(
"--inductor-compile-mode",
default=None,
help="torch.compile mode argument for inductor runs.",
)
parser.add_argument(
"--print-graph-breaks",
action="store_true",
help="Show a warning whenever graph break",
)
parser.add_argument(
"--log-graph-breaks",
action="store_true",
help="log graph breaks in a file",
)
parser.add_argument(
"--trace-on-xla",
action="store_true",
help="Whether to trace the model on XLA or on eager device",
)
parser.add_argument(
"--xla-tolerance",
type=float,
default=1e-2,
help="XLA needs a loose tolerance to pass the correctness check",
)
parser.add_argument(
"--collect-outputs",
action="store_true",
help="""Whether to collect outputs for training. Set this to true if we
want to verify the numerical correctness of graidents. But that may
cause time measurement not accurate""",
)
parser.add_argument(
"--enable-activation-checkpointing",
action="store_true",
help="Enables activation checkpointing for HF models",
)
parser.add_argument("--timing", action="store_true", help="Emits phase timing")
parser.add_argument(
"--progress",
action="store_true",
help="Print n/k models message between each model run.",
)
parser.add_argument(
"--timeout",
type=int,
default=2000,
help="timeout (second) for benchmarking.",
)
parser.add_argument(
"--per_process_memory_fraction",
type=float,
default=1,
help="Set per-process GPU memory fraction (limit) for reducing usable size and reproducing OOMs",
)
parser.add_argument(
"--no-translation-validation",
action="store_true",
help="Disable translation validation for accuracy builds.",
)
parser.add_argument(
"--minify",
action="store_true",
help="Enable minification when failure is below tolerance. Save repro script for each model.",
)
parser.add_argument(
"--compiled-autograd",
action="store_true",
help="Enables compiled autograd on compiled benchmark",
)
parser.add_argument(
"--profile_dynamo_cache_lookup",
"--profile-dynamo-cache-lookup",
action="store_true",
help="profiles TorchDynamo cache lookup",
)
parser.add_argument(
"--snapshot-memory",
"--snapshot_memory",
action="store_true",
help="Enables Memory Snapshot tool for memory deep dives: https://pytorch.org/blog/understanding-gpu-memory-1/",
)
group_latency = parser.add_mutually_exclusive_group()
group_latency.add_argument(
"--cold-start-latency",
"--cold_start_latency",
action="store_true",
help="Use a fresh triton cachedir when running each model, to force cold-start compile.",
)
group_latency.add_argument(
"--warm-start-latency",
"--warm_start_latency",
action="store_true",
help="Run model(s) twice and preseve caches in between to enable a 'warm start' on the 2nd run",
)
group_fuser = parser.add_mutually_exclusive_group()
# --nvfuser is now the default, keep the option to not break scripts
group_fuser.add_argument("--nvfuser", action="store_true", help=argparse.SUPPRESS)
group_fuser.add_argument("--nnc", action="store_true", help="enable NNC for GPUs")
group_prec = parser.add_mutually_exclusive_group()
group_prec.add_argument("--float16", action="store_true", help="cast model to fp16")
group_prec.add_argument(
"--bfloat16", action="store_true", help="cast model to bf16"
)
group_prec.add_argument("--float32", action="store_true", help="cast model to fp32")
group_prec.add_argument(
"--amp", action="store_true", help="use automatic mixed precision"
)
parser.add_argument(
"--amp-dtype",
choices=("bfloat16", "float16"),
help="the data type used with automatic mixed precision",
)
group_printout = parser.add_mutually_exclusive_group()
group_printout.add_argument(
"--verbose", "-v", action="store_true", help="enable verbose debug printouts"
)
group_printout.add_argument(
"--quiet", "-q", action="store_true", help="suppress debug printouts"
)
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--coverage", action="store_true", help="(default) " + help(coverage_experiment)
)
group.add_argument(
"--overhead", action="store_true", help=help(overhead_experiment)
)
group.add_argument(
"--speedup-dynamo-ts",
action="store_true",
help="TorchDynamo frontend with torchscript backend",
)
group.add_argument(
"--speedup-fx2trt", action="store_true", help=help(speedup_experiment_fx2trt)
)
group.add_argument(
"--speedup-fx2trt-fp16",
action="store_true",
help=help(speedup_experiment_fx2trt),
)
group.add_argument(
"--print-fx",
action="store_true",
help="Print fx traces captured from model",
)
group.add_argument(
"--print-aten-ops",
action="store_true",
help="Print traces of aten ops captured by AOT autograd",
)
group.add_argument(
"--inductor",
action="store_true",
help="Measure speedup with TorchInductor",
)
group.add_argument(
"--quantization",
choices=[
"int8dynamic",
"int8weightonly",
"int4weightonly",
"autoquant",
"noquant",
],
default=None,
help="Measure speedup of torchao quantization with TorchInductor baseline",
)
group.add_argument(
"--export",
action="store_true",
help="Measure pass rate with export",
)
group.add_argument(
"--export-aot-inductor",
action="store_true",
help="Measure pass rate with Export+AOTInductor",
)
group.add_argument(
"--xla", action="store_true", help="Compare TorchXLA to eager PyTorch"
)
group.add_argument(
"--torchscript-onnx",
"--torchscript_onnx",
action="store_true",
help="Measure speedup with TorchScript ONNX, i.e. `torch.onnx.export`",
)
group.add_argument(
"--torch-onnx-patch",
"--torch_onnx_patch",
action="store_true",
help="Measure speedup with dynamo ONNX patch, i.e. `torch_onnx`",
)
group.add_argument(
"--dynamo-onnx",
"--dynamo_onnx",
action="store_true",
help="Measure speedup with Dynamo ONNX, i.e. `torch.onnx.dynamo_export`",
)
group.add_argument(
"--dynamo-onnx-aot-inline",
"--dynamo_onnx_aot_inline",
action="store_true",
help="Measure speedup with Dynamo ONNX AOT Inline, i.e. `torch.onnx.dynamo_export`",
)
group.add_argument(
"--dynamo-onnx-aot-optimize",
"--dynamo_onnx_aot_optimize",
action="store_true",
help="Measure speedup with Dynamo ONNX w/ ort fusions, i.e. `torch.onnx.dynamo_export`",
)
group.add_argument(
"--backend",
choices=torch._dynamo.list_backends(exclude_tags=None),
help="measure speedup with a given backend",
)
group.add_argument("--nothing", action="store_true", help=help(null_experiment))
group.add_argument(
"--log-conv-args",
action="store_true",
help="Dump convolution input/weight/bias's shape/stride/dtype and other options to json",
)
group.add_argument(
"--recompile-profiler",
"--recompile_profiler",
action="store_true",
help="Run the dynamo recompilation profiler on each model.",
)
group.add_argument(
"--find-batch-sizes",
action="store_true",
help="finds the largest batch size that could fit on GPUs",
)
mode_group = parser.add_mutually_exclusive_group(required=True)
mode_group.add_argument(
"--accuracy",
action="store_true",
help="Checks accuracy with small batch size and eval mode",
)
mode_group.add_argument(
"--performance", action="store_true", help="Measures performance speedup"
)
mode_group.add_argument(
"--tolerance",
action="store_true",
help="extracts the tolerance for each model with small batch size and eval mode",
)
run_mode_group = parser.add_mutually_exclusive_group(required=True)
run_mode_group.add_argument(
"--training",
action="store_true",
help="Performs training",
)
run_mode_group.add_argument(
"--inference", action="store_true", help="Performs inference"
)
return parser.parse_args(args)
def process_entry(rank, runner, original_dir, args):
args.rank = rank
with maybe_init_distributed(
args.init_distributed,
rank=rank,
world_size=args.world_size,
port=args.distributed_master_port,
):
return run(runner, args, original_dir)
def maybe_fresh_cache(args):
cache_dir_assigned = "TORCHINDUCTOR_CACHE_DIR" in os.environ
if not cache_dir_assigned and (
args.cold_start_latency or args.warm_start_latency or args.ci
):
return fresh_inductor_cache()
else:
return contextlib.nullcontext()
def main(runner, original_dir=None, args=None):
if original_dir:
os.chdir(original_dir)
args = parse_args() if not args else parse_args(args)
if args.baseline:
args.baseline = os.path.abspath(args.baseline)
if should_diff_branch(args):
import git
# We do this here so we error out earlier if there's an issue
repo = git.Repo()
if repo.is_dirty():
raise RuntimeError(
"--diff-branch called on dirty branch. Commit, stash, or reset."
)
main_branch = repo.active_branch.name
if main_branch == args.diff_branch:
raise RuntimeError(
f"--diff-branch: current branch is same as {args.diff_branch} branch, what are you diffing?"
)
with maybe_fresh_cache(args):
args.init_distributed = args.only and args.multiprocess
if args.init_distributed:
# NB: Do NOT query device count before CUDA initialization; we're
# going to overwrite CUDA_VISIBLE_DEVICES and this will result in
# https://github.com/pytorch/pytorch/issues/107300
device_count = torch.cuda.device_count()
if device_count <= 1:
log.warning(
"The use multiprocess flag is set but there are <= 1 devices available."
)
# multiprocess path
args.world_size = device_count
mp.spawn(
process_entry, args=(runner, original_dir, args), nprocs=device_count
)
elif args.only and args.warm_start_latency:
# Warm start mode. Enable FX graph caching and perform back-to-back runs in
# separate processes (but ensure the inductor cache is preserved across runs).
env = os.environ.copy()
env["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
cmd = [sys.executable] + sys.argv
cmd.remove("--warm-start-latency")
print(f"Performing cold-start run for {args.only}")
warmup_cmd = cmd + ["--repeat=1", "--disable-output"]
subprocess.check_call(warmup_cmd, timeout=args.timeout, env=env)
print(f"Performing warm-start run for {args.only}")
subprocess.check_call(cmd, timeout=args.timeout, env=env)
else:
# single process path just uses the main process
args.world_size = 1
process_entry(0, runner, original_dir, args)
def write_csv_when_exception(args, name: str, status: str, device=None):
print(status)
placeholder_batch_size = 0
devices = [device] if device is not None else args.devices
if args.accuracy:
headers = ["dev", "name", "batch_size", "accuracy"]
rows = [[device, name, placeholder_batch_size, status] for device in devices]
elif args.performance:
headers = ["dev", "name", "batch_size", "speedup", "abs_latency"]
rows = [[device, name, placeholder_batch_size, 0.0, 0.0] for device in devices]
else:
headers = []
rows = [[device, name, placeholder_batch_size, 0.0] for device in devices]
for row in rows:
write_outputs(output_filename, headers, row)
def run(runner, args, original_dir=None):
# Pass the parsed args object to benchmark runner object
runner.args = args
args.filter = args.filter or [r"."]
args.exclude = args.exclude or [r"^$"]
args.exclude_exact = args.exclude_exact or []
if args.inductor:
assert args.backend is None
args.backend = "inductor"
if args.quantization:
assert args.backend is None
args.backend = "torchao"
if args.dynamic_batch_only:
args.dynamic_shapes = True
torch._dynamo.config.assume_static_by_default = True
if args.dynamic_shapes:
if not args.dynamic_batch_only:
torch._dynamo.config.assume_static_by_default = False
if args.propagate_real_tensors:
# TODO: Separate flag for data dependent
torch._dynamo.config.capture_scalar_outputs = True
torch._dynamo.config.capture_dynamic_output_shape_ops = True
torch._functorch.config.fake_tensor_propagate_real_tensors = True
if args.specialize_int:
torch._dynamo.config.specialize_int = True
if args.ci:
if args.accuracy:
# Run fewer iterations when checking accuracy
args.repeat = min(args.repeat, 2)
# Set translation validation on by default on CI accuracy runs.
torch.fx.experimental._config.translation_validation = True
if args.ddp:
assert args.training, "DDP benchmark requires --training mode"
torch._dynamo.config.optimize_ddp = args.optimize_ddp_mode
if args.only == "dlrm":
log.error(
"DLRM+DDP is unsupported as it requires sharding the embedding layer separately from DDP"
)
return sys.exit(-1)
if args.accuracy:
# Use small batch size. We use >1 batch size to ensure we test
# batch_norm type of operators that work on batch dims.
# TODO - Go through the failures for batch size = 2
if args.batch_size is None:
if runner.suite_name == "huggingface":
args.batch_size = 1
elif runner.suite_name == "torchbench":
args.batch_size = 4
else:
# Larger batch size of TIMM models to have stable batch_norm
assert runner.suite_name == "timm_models"
args.batch_size = 8
# Remove sources of randomness
if runner.suite_name not in ("timm_models", "huggingface"):
# TODO - Using train mode for timm_models and HF models. Move to train mode for Torchbench as well.
args.use_eval_mode = True
inductor_config.fallback_random = True
if args.only is not None and args.only not in {
"alexnet",
"Background_Matting",
"pytorch_CycleGAN_and_pix2pix",
"pytorch_unet",
"Super_SloMo",
"vgg16",
# https://github.com/pytorch/pytorch/issues/96724
"Wav2Vec2ForCTC",
"Wav2Vec2ForPreTraining",
"sam",
"sam_fast",
"resnet50_quantized_qat",
"mobilenet_v2_quantized_qat",
}:
# some of the models do not support use_deterministic_algorithms
torch.use_deterministic_algorithms(True)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.mkldnn.deterministic = True
# Remove randomeness when torch manual seed is called
patch_torch_manual_seed()
# Some models e.g. yolov3 assert batch size on n_gpus
if "CUDA_VISIBLE_DEVICES" not in os.environ and not args.multiprocess:
args.device_index = "0"
# Stricter check to disable fallbacks
args.suppress_errors = False
if args.device_index is not None:
if args.multiprocess:
print("Cannot specify both --device_index and --multiprocess")
return sys.exit(-1)
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_index
elif args.performance:
# Ensure that we test on real scenarios
args.use_eval_mode = False
if args.partition_id > args.total_partitions or args.partition_id < 0:
print("Invalid partition id")
return sys.exit(-1)
if not args.devices:
if torch.cuda.is_available():
args.devices = ["cuda"]
else:
log.warning("torch.cuda.is_available() == False, using CPU")
args.devices = ["cpu"]
if args.devices != ["cpu"] and (HAS_CUDA or HAS_XPU):
global synchronize
synchronize = torch.cuda.synchronize if HAS_CUDA else torch.xpu.synchronize
if (
args.devices == ["cuda"]
and torch.cuda.get_device_properties(0).total_memory < 25 * 2**30
):
# OOM errors on an RTX 3090 with 24gb RAM
runner.skip_models.update(
{
# torchbench
"hf_Longformer",
"timm_nfnet",
"timm_efficientdet",
}
)
if args.training:
runner.skip_models.add("hf_T5")
if args.nnc:
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
torch._C._jit_set_texpr_fuser_enabled(True)
torch._C._jit_set_nvfuser_enabled(False)
if args.threads:
torch.set_num_threads(args.threads)
if args.verbose:
torch._logging.set_logs(dynamo=logging.DEBUG)
if args.print_graph_breaks:
torch._logging.set_logs(graph_breaks=True)
if args.quiet:
torch._logging.set_logs(dynamo=logging.ERROR)
torch._dynamo.config.suppress_errors = args.suppress_errors
if args.training:
runner.model_iter_fn = runner.forward_and_backward_pass
runner.skip_models.update(runner.skip_not_suitable_for_training_models)
else:
runner.model_iter_fn = runner.forward_pass
if args.fast:
runner.skip_models.update(runner.slow_models)
if args.devices == ["cpu"]:
runner.skip_models.update(runner.skip_models_for_cpu)
elif args.devices == ["cuda"]:
runner.skip_models.update(runner.skip_models_for_cuda)
if not args.multiprocess:
runner.skip_models.update(runner.skip_multiprocess_models)
if args.freezing:
if args.devices == ["cpu"]:
runner.skip_models.update(runner.skip_models_for_freezing_cpu)
elif args.devices == ["cuda"]:
runner.skip_models.update(runner.skip_models_for_freezing_cuda)
if args.no_skip:
runner.skip_models.clear()
experiment = null_experiment
global \
current_name, \
current_device, \
current_batch_size, \
current_backend, \
current_mode, \
current_dtype, \
current_quantization, \
current_settings, \
output_filename, \
disable_output, \
optimize_ctx, \
current_onnx_compiler
optimize_ctx = contextlib.nullcontext()
if args.disable_output:
disable_output = True
if args.overhead:
optimize_ctx = torch._dynamo.optimize(dummy_fx_compile, nopython=args.nopython)
experiment = speedup_experiment
output_filename = "overheads.csv"
elif args.inductor:
inductor_config.debug = args.verbose
if args.threads:
inductor_config.cpp.threads = args.threads
optimize_ctx = functools.partial(
torch.compile,
backend="inductor",
fullgraph=args.nopython,
mode=args.inductor_compile_mode,
)
experiment = speedup_experiment
output_filename = "inductor.csv"
elif args.export:
optimize_ctx = export
experiment = speedup_experiment
output_filename = "export.csv"
elif args.xla:
(dev,) = args.devices
os.environ["PJRT_DEVICE"] = {"cuda": "GPU", "cpu": "CPU"}[dev]
torch._dynamo.mark_dynamic = MagicMock()
experiment = xla
output_filename = "xla.csv"
elif args.torchscript_onnx:
optimize_ctx = functools.partial(
optimize_onnx_ctx,
args.output_directory or ".",
OnnxModelFromTorchScript,
copy_before_export=args.performance, # Accuarcy bench already did deepcopy
)
experiment = speedup_experiment_onnx
output_filename = "torchscript_onnx.csv"
current_onnx_compiler = "torchscript"
elif args.torch_onnx_patch:
optimize_ctx = functools.partial(
optimize_onnx_ctx,
args.output_directory or ".",
OnnxModelFromTorchScript,
copy_before_export=args.performance,
use_experimental_patch=True,
)
experiment = speedup_experiment_onnx
output_filename = "torch_onnx_patch.csv"
current_onnx_compiler = "dynamo"
elif args.dynamo_onnx:
optimize_ctx = functools.partial(
optimize_onnx_ctx,
args.output_directory or ".",
OnnxModelFromDynamo,
dynamic_shapes=args.dynamic_shapes,
copy_before_export=args.performance,
)
experiment = speedup_experiment_onnx
output_filename = "dynamo_onnx.csv"
current_onnx_compiler = "dynamo"
elif args.dynamo_onnx_aot_inline:
optimize_ctx = functools.partial(
optimize_onnx_ctx,
args.output_directory or ".",
OnnxModelFromDynamoAotInline,
dynamic_shapes=args.dynamic_shapes,
copy_before_export=args.performance,
)
experiment = speedup_experiment_onnx
output_filename = "dynamo_onnx_aot_inline.csv"
current_onnx_compiler = "dynamo"
elif args.dynamo_onnx_aot_optimize:
optimize_ctx = functools.partial(
optimize_onnx_ctx,
args.output_directory or ".",
OnnxModelFromDynamoAotOptimize,
dynamic_shapes=args.dynamic_shapes,
copy_before_export=args.performance,
)
experiment = speedup_experiment_onnx
output_filename = "dynamo_onnx_aot_optimize.csv"
current_onnx_compiler = "dynamo"
elif args.speedup_dynamo_ts:
optimize_ctx = torch._dynamo.optimize("ts", nopython=args.nopython)
experiment = speedup_experiment
output_filename = "speedup_dynamo_ts.csv"
elif args.prims_nvfuser:
optimize_ctx = torch._dynamo.optimize("prims_nvfuser", nopython=args.nopython)
experiment = speedup_experiment
backend_str = "prims_nvfuser"
output_filename = f"accuracy_aot_{backend_str}.csv"
elif args.print_fx:
optimize_ctx = torch._dynamo.optimize(
print_fx,
nopython=args.nopython,
)
elif args.print_aten_ops:
optimize_ctx = torch._dynamo.optimize(
print_aten_ops,
nopython=args.nopython,
)
elif args.nothing:
optimize_ctx = nothing
experiment = speedup_experiment
output_filename = "nothing.csv"
elif args.backend or args.export_aot_inductor:
if args.export_aot_inductor:
assert not args.training, "AOTInductor only supports inference"
optimize_ctx = functools.partial(export_aot_inductor)
# AOTInductor doesn't support control flow yet
runner.skip_models.update(runner.skip_models_due_to_control_flow)
elif args.backend == "torchao":
assert "cuda" in args.devices, "Quantization requires CUDA device."
assert args.bfloat16, "Quantization requires dtype bfloat16."
try:
from torchao_backend import setup_baseline, torchao_optimize_ctx
except ImportError:
try:
from .torchao_backend import setup_baseline, torchao_optimize_ctx
except ImportError:
from userbenchmark.dynamo.dynamobench.torchao_backend import (
setup_baseline,
torchao_optimize_ctx,
)
setup_baseline()
baseline_ctx = functools.partial(
torch.compile,
backend="inductor",
fullgraph=args.nopython,
mode=args.inductor_compile_mode,
)
model_iter_fn = baseline_ctx(runner.model_iter_fn)
# needed to avoid error that causes inconsistent timing due to:
# Unable to hit fast path of CUDAGraphs because of pending, uninvoked backwards
def model_iter_fn_and_mark_step(*args, **kwargs):
torch.compiler.cudagraph_mark_step_begin()
model_iter_fn(*args, **kwargs)
runner.model_iter_fn = model_iter_fn_and_mark_step
optimize_ctx = torchao_optimize_ctx(args.quantization)
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment if not args.backend == "torchao" else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"
elif args.tolerance:
output_filename = f"tolerance_{args.backend}.csv"
else:
output_filename = f"speedup_{args.backend}.csv"
elif args.recompile_profiler:
output_filename = "recompile_profiler_log.csv"
experiment = recompile_profiler_experiment
else:
optimize_ctx = torch._dynamo.optimize(
fx_insert_profiling, nopython=args.nopython
)
experiment = coverage_experiment
output_filename = "coverage.csv"
if args.inductor or args.backend == "inductor" or args.export_aot_inductor:
inductor_config.triton.cudagraphs = not args.disable_cudagraphs
inductor_config.triton.persistent_reductions = (
not args.disable_persistent_reductions
)
inductor_config.split_reductions = not args.disable_split_reductions
inductor_config.triton.divisible_by_16 = not args.disable_divisible_by_16
if args.inference:
inductor_config.freezing = args.freezing
if args.inductor_config:
for config in args.inductor_config:
key, value = config.split("=")
typ = type(inductor_config.__getattr__(key))
if issubclass(typ, bool):
assert value in ("0", "1", "True", "False")
value = value in ("1", "True")
elif issubclass(typ, (str, int, float)):
value = typ(value)
else:
raise NotImplementedError(typ)
inductor_config.__setattr__(key, value)
runner.setup_amp()
if args.output:
output_filename = args.output
if output_filename:
if args.output_directory:
output_filename = os.path.join(args.output_directory, output_filename)
else:
output_filename = os.path.join(
torch._dynamo.config.base_dir, output_filename
)
if args.find_batch_sizes and args.only:
for device in args.devices:
batch_size = runner.batch_size_finder(device, args.only)
print(args.only, batch_size)
write_outputs(output_filename, [], [args.only, batch_size])
return
if args.export_profiler_trace:
if args.profiler_trace_name is None:
if args.backend:
args.profiler_trace_name = args.backend
elif args.inductor:
args.profiler_trace_name = "inductor"
else:
args.profiler_trace_name = "profile"
else:
args.profiler_trace_name = args.profiler_trace_name
if args.no_translation_validation:
# Overwrite 'translation_validation' config, if specified.
torch.fx.experimental._config.translation_validation = False
experiment = functools.partial(experiment, args, runner.model_iter_fn)
if args.only and should_diff_branch(args):
import git
repo = git.Repo()
main_branch = repo.active_branch.name
try:
# Adding diff-branch again to the args will override previous value
call_args = (
[sys.executable] + sys.argv + [f"--diff-branch={diff_branch_default}"]
)
# Run for main branch
subprocess.check_call(call_args + [f"--tag={main_branch}"])
# Run for comparison branch
repo.git.checkout(args.diff_branch)
subprocess.check_call(call_args + [f"--tag={args.diff_branch}"])
finally:
# Go back to main branch
repo.git.checkout(main_branch)
elif args.only:
model_name = args.only
for device in args.devices:
batch_size = args.batch_size
if args.batch_size_file:
batch_size = read_batch_size_from_file(
args, args.batch_size_file, model_name
)
if model_specified_by_path(args.only):
model, example_inputs = load_model_from_path(args.only)
name = model.__class__.__name__
model = model.to(device=device)
example_inputs = tree_map_only(
torch.Tensor, lambda x: x.to(device=device), example_inputs
)
else:
name = model_name
try:
with tqdm(desc="loading model"):
extra_args = []
if hasattr(args, "rank") and hasattr(args, "world_size"):
extra_args += [
"--rank",
str(args.rank),
"--world_size",
str(args.world_size),
]
if args.part:
(
device,
name,
model,
example_inputs,
batch_size,
) = runner.load_model(
device,
model_name,
batch_size=batch_size,
part=args.part,
extra_args=extra_args,
)
else:
if args.fsdp:
# Always load model on cpu for fsdp
# When initializing FSDP, we will use the cuda device if args.cuda is set
(
_,
name,
model,
example_inputs,
batch_size,
) = runner.load_model(
"cpu",
model_name,
batch_size=batch_size,
extra_args=extra_args,
)
else:
(
device,
name,
model,
example_inputs,
batch_size,
) = runner.load_model(
device,
model_name,
batch_size=batch_size,
extra_args=extra_args,
)
except Exception as e:
import traceback
mode = "train" if args.training else "eval"
print(f"{device:4} {mode:5} {name:34} ")
print(traceback.format_exc())
status = (
"model_fail_to_load"
if isinstance(e, NotImplementedError)
else "eager_fail_to_run"
)
write_csv_when_exception(args, name, status, device)
# NB: current_name/current_device not set, so pass
# explicitly
output_signpost(
{"name": name, "dev": device},
args,
runner.suite_name,
error=status,
)
continue # bad benchmark implementation
if args.trace_on_xla:
xla_dev = xm.xla_device()
model = model.to(device=xla_dev)
example_inputs = tree_map_only(
torch.Tensor, lambda x: x.to(device=xla_dev), example_inputs
)
current_name = name
current_device = device
current_batch_size = batch_size
current_backend = args.backend
current_mode = (
"training" if args.training else "inference" if args.inference else ""
)
if args.float16:
current_dtype = "float16"
elif args.bfloat16:
current_dtype = "bfloat16"
elif args.float32:
current_dtype = "float32"
elif args.amp:
current_dtype = "amp"
else:
current_dtype = ""
current_quantization = args.quantization
# Keep the remaining of the settings
current_settings = vars(args)
set_model_name(name)
# Look for stuff that looks like batch size, and mark it dynamic.
# Better integration would integrate directly with benchmark suite
# but cannot conveniently do this
# NB: This must be done late enough so that we don't do more
# conversions on the inputs
# NB: Assumes only the first batch-y like dimension is the batch
marked = False
def detect_and_mark_batch(t):
nonlocal marked
for i, s in enumerate(t.size()):
if s == batch_size:
torch._dynamo.mark_dynamic(t, i)
marked = True
break
if (
args.dynamic_batch_only
and batch_size > 1
and model_name not in CI_SKIP_DYNAMIC_BATCH_ONLY
):
tree_map_only(torch.Tensor, detect_and_mark_batch, example_inputs)
assert marked, f"nothing in example_inputs had a dim with {batch_size}"
if args.log_operator_inputs:
log_operator_inputs(
model, example_inputs, runner.model_iter_fn, name, args
)
continue
if args.per_process_memory_fraction != 1:
torch.cuda.set_per_process_memory_fraction(
args.per_process_memory_fraction
)
if model_name in DO_NOT_CAST_INPUTS:
model, _ = runner.cast_based_on_args(model, example_inputs)
else:
model, example_inputs = runner.cast_based_on_args(model, example_inputs)
runner.setup_amp(current_device)
guard_ctx = contextlib.nullcontext()
if name in runner.guard_on_nn_module_models:
guard_ctx = torch._dynamo.config.patch(guard_nn_modules=True)
inline_ctx = contextlib.nullcontext()
if name in runner.inline_inbuilt_nn_modules_models:
inline_ctx = torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
with guard_ctx:
with inline_ctx:
runner.run_one_model(
name,
model,
example_inputs,
optimize_ctx,
experiment,
explain=args.explain,
tag=args.tag,
)
if args.generate_aot_autograd_stats:
stats_file = output_filename.split(".csv")[0] + "_stats.csv"
write_outputs(
stats_file,
("dev", "name", "batch_size", "total_aot_graphs", "ok_aot_graphs"),
[
current_device,
current_name,
current_batch_size,
*Stats.aot_summary(),
],
)
else:
metrics.purge_old_log_files()
if output_filename and os.path.exists(output_filename):
os.unlink(output_filename)
if original_dir:
os.chdir(original_dir)
model_names = list(runner.iter_model_names(args))
nmodels = len(model_names)
for i, name in enumerate(model_names):
current_name = name
if args.progress:
print(f"Running model {i+1}/{nmodels}", flush=True)
try:
timeout = args.timeout
if should_diff_branch(args):
timeout *= 2
env = os.environ.copy()
if args.ci and name in CI_PRESERVE_COMPILE_DEBUG:
env["TORCH_COMPILE_DEBUG"] = "1"
subprocess.check_call(
[sys.executable] + sys.argv + [f"--only={name}"],
timeout=timeout,
env=env,
)
except subprocess.TimeoutExpired:
write_csv_when_exception(args, name, "timeout")
# NB: device is potentially multiple here, though we should
# try our best to report in anyway TODO
output_signpost(
{"name": name}, args, runner.suite_name, error="timeout"
)
except subprocess.CalledProcessError as e:
print("Run failed with return code: ", e.returncode, file=sys.stderr)
print("Output: ", e.output, file=sys.stderr)
print("Error: ", e.stderr, file=sys.stderr)
print_summary(output_filename, print_dataframe=args.print_dataframe_summary)
def log_operator_inputs(model, example_inputs, model_iter_fn, name, args):
mode = "training" if args.training else "eval"
output = os.path.join(os.path.dirname(args.output), f"{name}_{mode}.txt")
# TODO - add option for coalescing inputs over multiple runs
if os.path.exists(output):
print(f"Skipping {name}, {output} already exists")
return
print(f"Running {name}")
try:
from .microbenchmarks.operator_inp_utils import OperatorInputsMode
except ImportError:
from microbenchmarks.operator_inp_utils import OperatorInputsMode
operator_mode = OperatorInputsMode()
fake_tensor_mode = FakeTensorMode()
with torch._subclasses.fake_tensor.FakeCopyMode(fake_tensor_mode):
model_fake = copy.deepcopy(model)
example_inputs_fake = copy.deepcopy(example_inputs)
try:
with fake_tensor_mode, operator_mode:
model_iter_fn(model_fake, example_inputs_fake, collect_outputs=False)
except Exception as e:
print(f"{name} failed to run with fake tensors, trying real. Exception: {e}")
operator_mode = OperatorInputsMode()
try:
with operator_mode:
model_iter_fn(model, example_inputs, collect_outputs=False)
except Exception as e2:
print(f"{name} failed to run with real. Exception: {e2}")
raise
print(f"Writing output to {output}")
operator_mode.log_to_file(output)
if __name__ == "__main__":
raise RuntimeError(
f"You shouldn't run {sys.argv[0]} directly, instead try timm_model.py, torchbench.py or huggingface.py"
)
|