1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
import os
import timeit
import torch.fx
from torch._dynamo.utils import counters
from torch._inductor.utils import clear_inductor_caches, fresh_inductor_cache
N = 10000
K = 100
def huge_graph(x):
for _ in range(N):
x = x.sin()
return x
def main():
torch._inductor.config.fx_graph_cache = True
torch._inductor.config.fx_graph_remote_cache = False
with fresh_inductor_cache():
a = torch.randn(4).cuda()
compiled_fn = torch.compile(huge_graph, backend="inductor")
# write to cache
compiled_fn(a)
assert counters["inductor"]["fxgraph_cache_miss"] == 1
def setup():
torch._dynamo.reset()
clear_inductor_caches()
for m in torch._inductor.codecache.PyCodeCache.cache.values():
os.remove(m.__file__)
counters.clear()
def fn():
result = compiled_fn(a)
assert counters["inductor"]["fxgraph_cache_miss"] == 0
assert counters["inductor"]["fxgraph_cache_hit"] == 1
return result
t = min(timeit.repeat(fn, setup=setup, number=K, repeat=3))
print(f"took {t:.1f}s")
if __name__ == "__main__":
main()
|