File: inductor_bmm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (61 lines) | stat: -rw-r--r-- 1,702 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from benchmark_helper import time_with_torch_timer

import torch
import torch._dynamo
import torch._dynamo.config
import torch._inductor.config as config


@torch._dynamo.optimize("inductor", nopython=True)
def inductor_aten_bmm(a, b):
    return torch.bmm(a, b)


@torch._dynamo.optimize("inductor", nopython=True)
def inductor_triton_bmm(a, b):
    return torch.bmm(a, b)


def torch_bmm(a, b):
    return torch.bmm(a, b)


def test_total_time(shapes):
    print("shape; torch bmm; inductor aten bmm; inductor triton bmm")
    for i in range(len(shapes)):
        a_shape, b_shape = shapes[i]
        print(a_shape, "x", b_shape, end="; ")
        a = torch.randn(a_shape, device="cuda", dtype=torch.float16)
        b = torch.randn(b_shape, device="cuda", dtype=a.dtype)

        config.triton.use_bmm = False
        inductor_aten_bmm(a, b)

        config.triton.use_bmm = True
        inductor_triton_bmm(a, b)

        torch_ms = time_with_torch_timer(torch_bmm, (a, b)).mean * 1000

        config.triton.use_bmm = False
        ind_aten_ms = time_with_torch_timer(inductor_aten_bmm, (a, b)).mean * 1000

        config.triton.use_bmm = True
        ind_triton_ms = time_with_torch_timer(inductor_triton_bmm, (a, b)).mean * 1000

        print(torch_ms, ind_aten_ms, ind_triton_ms, sep="; ")


if __name__ == "__main__":
    shapes = [
        # BERT (all)
        ([192, 128, 64], [192, 64, 128]),
        ([192, 128, 128], [192, 128, 64]),
        # hf_GPT2 (all)
        ([12, 1024, 1024], [12, 1024, 64]),
        ([12, 1024, 64], [12, 64, 1024]),
        # hf_Albert (all)
        ([12, 512, 64], [12, 64, 512]),
        ([12, 512, 512], [12, 512, 64]),
    ]

    test_total_time(shapes)