File: microbench.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (184 lines) | stat: -rwxr-xr-x 5,574 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3

import argparse
import inspect
import sys

import numpy as np
import tabulate

import torch
import torch._inductor
from torch._dynamo.backends.cudagraphs import cudagraphs_inner
from torch._dynamo.testing import same
from torch._inductor.compile_fx import compile_fx
from torch._inductor.utils import timed


aten = torch.ops.aten

try:
    import test.test_torchinductor as tti
except ImportError:
    tti = None


def compute_speedups(args, models, example_inputs):
    expected = models[0](*example_inputs)
    for model in models[1:]:
        actual = model(*example_inputs)
        assert same(actual, expected), expected[0] - actual[0]

    timings = np.zeros((args.repeat, len(models)), np.float64)
    for rep in range(args.repeat):
        # interleave the runs to handle frequency scaling and load changes
        for m, model in enumerate(models):
            timings[rep, m] = timed(model, example_inputs)
    median = np.median(timings, axis=0)
    return (median[0] / median[1:]).tolist()


def microbenchmark(args, model, example_inputs):
    compiled_fn = compile_fx(torch.fx.symbolic_trace(model), example_inputs)
    cudagraphs_eager = cudagraphs_inner(model, example_inputs, copy_outputs=False)
    cudagraphs_jit = cudagraphs_inner(
        torch.jit.trace(model, example_inputs), example_inputs, copy_outputs=False
    )
    return compute_speedups(
        args,
        [cudagraphs_eager, cudagraphs_jit, compiled_fn],
        example_inputs,
    )


class MyModel1(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.model = torch.nn.Sequential(
            torch.nn.Linear(1024, 1024),
            torch.nn.ReLU(),
        )

    def forward(self, input):
        # return (self.model(input) + 1,)
        return (self.model(input),)


class MyModel2(torch.nn.Module):
    def forward(self, x, y):
        # return x / (torch.abs(x) + 1.0),
        return (x + y,)


class MicroBenchmarks:
    @staticmethod
    def add(a, b):
        return (a + b,)

    @staticmethod
    def scale(x, m, d):
        return ((x - m) / torch.clip(d, 1e-4),)

    @staticmethod
    def abs_norm(x):
        return (x / (torch.abs(x) + 1),)

    @staticmethod
    def add_relu_softmax(x, a):
        return (torch.softmax(torch.relu(x + a), -1),)

    @staticmethod
    def sum(a, b):
        return ((a + b).sum(),)

    @staticmethod
    def view(x):
        return (aten.alias(x),)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--filter", "-k", action="append", help="filter benchmarks with regexp"
    )
    parser.add_argument(
        "--exclude", "-x", action="append", help="filter benchmarks with regexp"
    )
    parser.add_argument("--devices", "-d", action="append", help="cpu or cuda")
    parser.add_argument("--size", "-s", action="append", help="cpu or cuda")
    parser.add_argument(
        "--repeat", "-n", type=int, default=30, help="number of timing runs"
    )
    parser.add_argument(
        "--threads", "-t", type=int, help="number of threads to use for eager"
    )
    parser.add_argument(
        "--verbose", "-v", action="store_true", help="enable verbose debug printouts"
    )
    parser.add_argument(
        "--nvfuser", action="store_true", help="enable nvfuser globally"
    )
    parser.add_argument("--transpose", action="store_true", help="transpose one input")
    parser.add_argument("--broadcast", action="store_true", help="broadcast one input")
    args = parser.parse_args()

    # defaults
    args.devices = args.devices or ["cpu", "cuda"]
    args.filter = args.filter or [r"."]
    args.exclude = args.exclude or [r"^$"]
    args.size = args.size or [64, 256, 1024, 4096, 8192]

    if args.nvfuser:
        torch._C._jit_override_can_fuse_on_cpu(False)
        torch._C._jit_override_can_fuse_on_gpu(False)
        torch._C._jit_set_texpr_fuser_enabled(False)
        torch._C._jit_set_nvfuser_enabled(True)
    else:
        torch._C._jit_override_can_fuse_on_cpu(torch._C._llvm_enabled())
        torch._C._jit_override_can_fuse_on_gpu(True)
        torch._C._jit_set_texpr_fuser_enabled(True)
        if torch.cuda.is_available():
            torch._C._jit_set_nvfuser_enabled(False)

    if args.threads:
        torch.set_num_threads(args.threads)
        torch._inductor.config.cpp.threads = args.threads

    if args.verbose:
        torch._inductor.config.debug = True

    torch._inductor.config.triton.autotune_pointwise = True

    rows = []
    for model in (MicroBenchmarks.sum, MicroBenchmarks.view):
        nargs = len(inspect.signature(model).parameters)
        for device in args.devices:
            for n in args.size:
                n = int(n)
                sys.stdout.write(f"{model.__name__:10} {device:4} {n:5} ")
                sys.stdout.flush()
                inputs = [torch.rand((n, n), device=device) for _ in range(nargs)]
                if args.broadcast:
                    inputs[-1] = torch.rand((1, n), device=device)
                if args.transpose:
                    inputs[-1] = inputs[-1].transpose(0, 1)
                result = microbenchmark(args, model, inputs)
                rows.append([model.__name__, device, str(n)] + result)
                print(" ".join(f"{v:.2f}x" for v in result))

    print(
        tabulate.tabulate(
            rows,
            headers=[
                "model",
                "dev",
                "n",
                "ts",
                "inductor",
            ],
        )
    )


if __name__ == "__main__":
    main()