1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
import functools
import logging
import math
import os
from collections import Counter, defaultdict
from functools import partial
from typing import Any, Dict, Generator, Iterable, Tuple
import torch
from torch.testing import make_tensor
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map
log = logging.getLogger(__name__)
OP_INP_DIRECTORY = os.path.join(os.path.dirname(__file__), "operator_inp_logs")
TIMM_DIR = os.path.join(OP_INP_DIRECTORY, "timm_train")
HF_DIR = os.path.join(OP_INP_DIRECTORY, "hf_train")
TORCHBENCH_DIR = os.path.join(OP_INP_DIRECTORY, "torchbench_train")
aten = torch.ops.aten
tensor_type = torch._C.TensorType.get()
dtype_abbrs = {
torch.bfloat16: "bf16",
torch.float64: "f64",
torch.float32: "f32",
torch.float16: "f16",
torch.complex32: "c32",
torch.complex64: "c64",
torch.complex128: "c128",
torch.int8: "i8",
torch.int16: "i16",
torch.int32: "i32",
torch.int64: "i64",
torch.bool: "b8",
torch.uint8: "u8",
}
dtype_abbrs_parsing = {value: key for key, value in dtype_abbrs.items()}
def truncate_inp(arg):
if arg in dtype_abbrs:
return dtype_abbrs[arg]
elif isinstance(arg, torch.device):
return arg.type
else:
return arg
# Serialize Function Call
class FuncCallWrapper:
def __init__(self, call, *args, **kwargs):
self.call = call
self.args = tree_map(truncate_inp, args)
self.kwargs = tree_map(truncate_inp, kwargs) if kwargs is not None else {}
def __repr__(self):
args = ", ".join([repr(arg) for arg in self.args])
kwargs = "".join(
[f", {str(key)}={value}" for key, value in self.kwargs.items()]
)
out = f"{self.call}({args}{kwargs})".strip('"')
# f strings introduce quotations we dont want
for key in dtype_abbrs_parsing:
out = out.replace(f"'{key}'", key)
return out
def serialize_sparse_tensor(e):
if isinstance(e, torch._subclasses.FakeTensor):
return FuncCallWrapper("ST", list(e.shape), e.dtype, e.layout, e.is_coalesced())
else:
return FuncCallWrapper(
"ST", list(e.shape), e.dtype, e.layout, e.is_coalesced(), e._nnz()
)
def deserialize_sparse_tensor(size, dtype, layout, is_coalesced, nnz=None):
raise NotImplementedError
def deserialize_tensor(size, dtype, stride=None):
if stride is not None:
out = torch.empty_strided(size, stride, dtype=dtype)
else:
out = torch.empty(size, dtype=dtype)
try:
out.copy_(make_tensor(size, dtype=dtype, device="cpu"))
except Exception as e:
print(e)
return out
return out
def serialize_tensor(e):
if not e.is_contiguous():
return FuncCallWrapper("T", list(e.shape), e.dtype, stride=e.stride())
else:
return FuncCallWrapper("T", list(e.shape), e.dtype)
def serialize_torch_args(e):
if isinstance(e, torch.Tensor):
if e.is_sparse:
return serialize_sparse_tensor(e)
return serialize_tensor(e)
else:
return truncate_inp(e)
def contains_tensor(elems):
for elem in pytree.tree_leaves(elems):
if isinstance(elem, torch.Tensor):
return True
return False
def skip_args(elems):
for i in pytree.tree_leaves(elems):
# only shows up in constructors and ops like that
if isinstance(i, (torch.memory_format, torch.storage.UntypedStorage)):
return True
return False
def contains_tensor_types(type):
return type.isSubtypeOf(tensor_type) or any(
contains_tensor_types(e) for e in type.containedTypes()
)
@functools.lru_cache(None)
def non_compute_operator(op):
schema = op._schema
# skip constructors
if not any(contains_tensor_types(arg.type) for arg in schema.arguments):
return True
if "_like" in op.name():
return True
# allow in place writes
if schema.is_mutable:
return False
tensor_inps = [arg for arg in schema.arguments if arg.type is tensor_type]
tensor_outputs = [ret for ret in schema.returns if ret.type is tensor_type]
# skip aliasing unless there are multiple outputs
if len(tensor_outputs) != 1:
return False
for inp in tensor_inps:
if inp.alias_info and tensor_outputs[0].alias_info:
if inp.alias_info.before_set.intersection(
tensor_outputs[0].alias_info.after_set
):
return True
return False
class OperatorInputsMode(TorchDispatchMode):
def __init__(self, func_db=None):
self.func_db = defaultdict(Counter) if func_db is None else func_db
def __torch_dispatch__(self, func_overload, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
arg_meta, kwarg_meta = tree_map(serialize_torch_args, (args, kwargs))
out = func_overload(*args, **kwargs)
inps = (args, kwargs)
if contains_tensor(inps) and not skip_args(inps) and contains_tensor(out):
serialized_str = repr((arg_meta, kwarg_meta))
self.func_db[str(func_overload)][serialized_str] += 1
return out
def log_to_file(self, output_filename, *, skip_non_compute_operators=True):
sorted_operators = sorted(self.func_db.keys())
with open(output_filename, "w") as f:
for operator in sorted_operators:
if skip_non_compute_operators and non_compute_operator(eval(operator)):
continue
f.write(f"Operator: {operator}\n")
operator_inputs = self.func_db[operator]
for inps, count in operator_inputs.items():
f.write(f"cnt: {count}, ")
# repr will add quotation marks around the dtype strings
for dtype_abbr in dtype_abbrs.values():
inps = inps.replace("'" + dtype_abbr + "'", dtype_abbr)
f.write(inps)
f.write("\n")
def map_to_device(e, device):
if isinstance(e, torch.Tensor):
return e.to(device)
elif isinstance(e, torch.device):
return device
elif isinstance(e, str):
if e == "cuda" or e == "cpu":
return device.type
else:
return e
def map_to_dtype(e, dtype):
if isinstance(e, torch.Tensor) and e.is_floating_point():
return e.to(dtype)
elif isinstance(e, torch.dtype):
return dtype
else:
return e
def deserialize_args(inps):
inps = inps.strip().strip("'")
global_vals = {
"T": deserialize_tensor,
"ST": deserialize_sparse_tensor,
"th": torch,
"inf": math.inf,
"torch": torch,
**dtype_abbrs_parsing,
}
# f strings introduce quotations we dont want
for key in dtype_abbrs_parsing:
inps = inps.replace(f"'{key}'", key)
return eval(inps.strip().strip("'").strip('"'), global_vals)
class OperatorInputsLoader:
def __init__(self, json_file_path):
self.operator_db = defaultdict(Counter)
with open(json_file_path) as f:
lines = f.readlines()
i = 0
while i < len(lines):
op_line = lines[i].strip("\n")
assert "Operator: " in op_line, op_line
operator = op_line[len("Operator: ") :]
operator = (
operator if operator != "aten.sum.SymInt" else "aten.sum.dim_IntList"
)
op_inps = Counter()
i += 1
while i < len(lines) and "Operator: " not in lines[i]:
line = lines[i]
cnt = eval(line[len("cnt: ") : line.find(",")])
inps = line[line.find(",") + 2 :].strip("'")
op_inps[inps] += cnt
i += 1
self.operator_db[operator] = op_inps
def get_inputs_for_operator(
self, operator, dtype=None, device="cuda"
) -> Generator[Tuple[Iterable[Any], Dict[str, Any]], None, None]:
assert (
str(operator) in self.operator_db
), f"Could not find {operator}, must provide overload"
if "embedding" in str(operator):
log.warning("Embedding inputs NYI, input data cannot be randomized")
yield
return
# line[1] represents number of times these inputs occured, ignored for now
for line in self.operator_db[str(operator)].items():
inps = line[0]
args, kwargs = deserialize_args(inps)
# Backwards require some inputs to be float16 and some to be float32
# So we record on half and upcast to float when specified
if dtype and dtype != torch.float16:
to_dtype = partial(map_to_dtype, dtype=dtype)
args, kwargs = tree_map(to_dtype, (args, kwargs))
if device:
to_device = partial(map_to_device, device=torch.device(device))
args, kwargs = tree_map(to_device, (args, kwargs))
yield args, kwargs
def get_all_ops(self):
for key in self.operator_db.keys():
try:
op = eval(key)
except AttributeError as ae:
log.warning("Evaluating an op name into an OpOverload: %s", ae)
continue
yield op
def get_call_frequency(self, op):
assert (
str(op) in self.operator_db
), f"Could not find {op}, must provide overload"
count = 0
for counter in self.operator_db[str(op)].values():
count += counter
return count
def merge(self, other):
for operator, counter_dict in other.operator_db.items():
for inps, cnt in counter_dict.items():
self.operator_db[operator][inps] += cnt
@staticmethod
def get_timm_loader():
return OperatorInputsLoader._load_directory(TIMM_DIR)
@staticmethod
def get_huggingface_loader():
return OperatorInputsLoader._load_directory(HF_DIR)
@staticmethod
def get_torchbench_loader():
return OperatorInputsLoader._load_directory(TORCHBENCH_DIR)
@staticmethod
def _load_directory(inp_dir):
assert os.path.isdir(inp_dir), inp_dir
union = None
for inp in os.listdir(inp_dir):
if inp[-4:] != ".txt":
continue
path = os.path.join(inp_dir, inp)
if union is None:
union = OperatorInputsLoader(path)
else:
union.merge(OperatorInputsLoader(path))
return union
|