File: torchao_backend.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (57 lines) | stat: -rw-r--r-- 2,225 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from typing import Any, Callable

import torch


def setup_baseline():
    from torchao.quantization.utils import recommended_inductor_config_setter

    recommended_inductor_config_setter()
    torch._dynamo.config.automatic_dynamic_shapes = False
    torch._dynamo.config.cache_size_limit = 10000


def torchao_optimize_ctx(quantization: str):
    from torchao.quantization.quant_api import (
        autoquant,
        int4_weight_only,
        int8_dynamic_activation_int8_weight,
        int8_weight_only,
        quantize_,
    )
    from torchao.utils import unwrap_tensor_subclass

    def inner(model_iter_fn: Callable):
        def _torchao_apply(module: torch.nn.Module, example_inputs: Any):
            if getattr(module, "_quantized", None) is None:
                if quantization == "int8dynamic":
                    quantize_(
                        module,
                        int8_dynamic_activation_int8_weight(),
                        set_inductor_config=False,
                    )
                elif quantization == "int8weightonly":
                    quantize_(module, int8_weight_only(), set_inductor_config=False)
                elif quantization == "int4weightonly":
                    quantize_(module, int4_weight_only(), set_inductor_config=False)
                if quantization == "autoquant":
                    autoquant(module, error_on_unseen=False, set_inductor_config=False)
                    if isinstance(example_inputs, dict):
                        module(**example_inputs)
                    else:
                        module(*example_inputs)
                    from torchao.quantization.autoquant import AUTOQUANT_CACHE

                    if len(AUTOQUANT_CACHE) == 0:
                        raise Exception(  # noqa: TRY002`
                            "NotAutoquantizable"
                            f"Found no autoquantizable layers in model {type(module)}, stopping autoquantized run"
                        )
                else:
                    unwrap_tensor_subclass(module)
                setattr(module, "_quantized", True)  # noqa: B010
            model_iter_fn(module, example_inputs)

        return _torchao_apply

    return inner