1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
# Some models have large dataset that doesn't fit in memory. Lower the batch
# size to test the accuracy.
batch_size:
training:
demucs: 4
dlrm: 1024
densenet121: 4
hf_Reformer: 4
hf_T5_base: 4
timm_efficientdet: 1
llama_v2_7b_16h: 1
# reduced from 16 due to cudagraphs OOM in TorchInductor dashboard
yolov3: 8
inference:
timm_efficientdet: 32
dont_change_batch_size:
- demucs
- pytorch_struct
- pyhpc_turbulent_kinetic_energy
# https://github.com/pytorch/benchmark/pull/1656
- vision_maskrcnn
tolerance:
# Need lower tolerance on GPU. GPU kernels have non deterministic kernels for these models.
higher:
- alexnet
- attention_is_all_you_need_pytorch
- densenet121
- hf_Albert
- vgg16
- mobilenet_v3_large
- nvidia_deeprecommender
- timm_efficientdet
# These models need >1e-3 tolerance
even_higher:
- soft_actor_critic
- tacotron2
- yolov3
- timm_efficientdet
- squeezenet1_1
higher_fp16:
- doctr_reco_predictor
- drq
- hf_Whisper
higher_bf16:
- doctr_reco_predictor
- drq
- hf_Whisper
cosine: []
require_larger_multiplier_for_smaller_tensor:
- yolov3
# These benchmarks took >600s on an i9-11900K CPU
very_slow: &VERY_SLOW_MODELS
# 3339s
- hf_BigBird
# 3062s
- hf_Longformer
# 930s
- hf_T5
# These benchmarks took >60s on an i9-11900K CPU
slow:
- *VERY_SLOW_MODELS
# 137s
- BERT_pytorch
# 116s
- demucs
# 242s
- fastNLP_Bert
# 221s
- hf_Albert
# 400s
- hf_Bart
# 334s
- hf_Bert
# 187s
- hf_DistilBert
# 470s
- hf_GPT2
# 141s
- hf_Reformer
# 317s
- speech_transformer
# 99s
- vision_maskrcnn
non_deterministic:
# https://github.com/pytorch/pytorch/issues/98355
- mobilenet_v3_large
- sam_fast
dtype:
force_amp_for_fp16_bf16_models:
- DALLE2_pytorch
- doctr_det_predictor
- doctr_reco_predictor
- Super_SloMo
- tts_angular
- pyhpc_turbulent_kinetic_energy
- detectron2_fcos_r_50_fpn
force_fp16_for_bf16_models:
- vision_maskrcnn
# models in canary_models that we should run anyway
canary_models:
- torchrec_dlrm
detectron2_models: &DETECTRON2_MODELS
- detectron2_fasterrcnn_r_101_c4
- detectron2_fasterrcnn_r_101_dc5
- detectron2_fasterrcnn_r_101_fpn
- detectron2_fasterrcnn_r_50_c4
- detectron2_fasterrcnn_r_50_dc5
- detectron2_fasterrcnn_r_50_fpn
- detectron2_maskrcnn_r_101_c4
- detectron2_maskrcnn_r_101_fpn
- detectron2_maskrcnn_r_50_fpn
# These models support only train mode. So accuracy checking can't be done in
# eval mode.
only_training:
- *DETECTRON2_MODELS
- tts_angular
- tacotron2
- demucs
- hf_Reformer
- pytorch_struct
- yolov3
trt_not_yet_working:
- alexnet
- resnet18
- resnet50
- mobilenet_v2
- mnasnet1_0
- squeezenet1_1
- shufflenetv2_x1_0
- vgg16
- resnext50_32x4d
skip:
all:
# OOMs (A100 40G)
- detectron2_maskrcnn
# TIMEOUT, https://github.com/pytorch/pytorch/issues/98467
- tacotron2
# Failing in eager mode
- hf_clip
# multi gpu not always available in benchmark runners
- simple_gpt_tp_manual
device:
cpu:
# OOMs
- hf_T5_generate
# model is CUDA only
- cm3leon_generate
# timeout
- nanogpt
# timeout
- sam
# model is CUDA only
- sam_fast
# model is CUDA only
- llama_v2_7b_16h
# flaky
- stable_diffusion
# requires FBGEMM, CUDA only
- torchrec_dlrm
- simple_gpt
# works on cuda, accuracy failure on cpu
- hf_Whisper
- stable_diffusion_text_encoder
- llava
- moco
cuda: []
test:
training:
- *DETECTRON2_MODELS
# not designed for training
- pyhpc_equation_of_state
- pyhpc_isoneutral_mixing
- pyhpc_turbulent_kinetic_energy
- maml
- llama
- llama_v2_7b_16h
- simple_gpt
- sam_fast
# Model's DEFAULT_TRAIN_BSIZE is not implemented
- cm3leon_generate
- hf_T5_generate
- doctr_det_predictor
- doctr_reco_predictor
- moondream
# doesnt fit in memory
- phi_1_5
- detectron2_fcos_r_50_fpn
control_flow:
- cm3leon_generate
- detectron2_fcos_r_50_fpn
- fastNLP_Bert
- hf_Longformer
- hf_Reformer
- hf_T5_generate
- opacus_cifar10
- speech_transformer
# Models that should only run in --multiprocess mode
multiprocess:
- simple_gpt
# for these models, conv-batchnorm fusing causes big numerical churn.
# Skip them
# mnasnet1_0 and shufflenet_v2_x1_0 can pass on cpu, moco cuda only.
freezing:
cuda:
- mnasnet1_0
- moco
- shufflenet_v2_x1_0
cpu: []
accuracy:
skip:
large_models:
# Models too large to have eager, dynamo and fp64_numbers simultaneosuly
# even for 40 GB machine. We have tested accuracy for smaller version of
# these models
- hf_GPT2_large
- hf_T5_large
- timm_vision_transformer_large
# accuracy https://github.com/pytorch/pytorch/issues/93847
- maml
- llama_v2_7b_16h
- Background_Matting
- stable_diffusion_unet
eager_not_deterministic:
# Models that deterministic algorithms can not be turned on for eager mode.
- Background_Matting
- pytorch_unet
max_batch_size:
hf_GPT2: 2
pytorch_unet: 2
|