File: training_loss.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (203 lines) | stat: -rw-r--r-- 6,475 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import inspect
import os
import sys
import time
from datetime import timedelta

from datasets import load_dataset, load_metric
from transformers import AutoModelForSequenceClassification, AutoTokenizer

import torch
import torch._dynamo
from torch.utils.data import DataLoader


torch.backends.cuda.matmul.allow_tf32 = True

# You will download around 84G dataset if you run this end to end training/evaluation example.

os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")


def data_processing(num_samples, batch_size):
    dataset = load_dataset("yelp_review_full")
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True)

    tokenized_datasets = dataset.map(tokenize_function, batched=True)

    tokenized_datasets = tokenized_datasets.remove_columns(["text"])
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
    tokenized_datasets.set_format("torch")

    small_train_dataset = tokenized_datasets["train"].select(range(num_samples))
    small_eval_dataset = tokenized_datasets["test"].select(range(num_samples))

    train_dataloader = DataLoader(small_train_dataset, batch_size=batch_size)
    eval_dataloader = DataLoader(small_eval_dataset, batch_size=batch_size)

    return train_dataloader, eval_dataloader


def training_iter_fn(batch, model, optimizer):
    outputs = model(**batch)
    loss = outputs.loss
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    return loss


def model_training_evaluation(
    backend, train_dataloader, eval_dataloader, model, optimizer, num_epochs, evaluation
):
    model.to(device)
    model.train()
    loss_history = []
    if not backend:
        # Run with native Pytorch
        opt_training_iter_fn = training_iter_fn
    else:
        # Support backends: eager, aot_eager, aot_nvfuser and inductor
        opt_training_iter_fn = torch._dynamo.optimize(backend)(training_iter_fn)
    for epoch in range(num_epochs):
        running_loss = 0.0
        for i, batch in enumerate(train_dataloader, 0):
            batch = {k: v.to(device) for k, v in batch.items()}
            loss = opt_training_iter_fn(batch, model, optimizer)
            running_loss += loss.item()
            if i % 100 == 99:
                loss_history.append(running_loss / 100)
                running_loss = 0.0

    if evaluation:
        metric = load_metric("accuracy")
        model.eval()
        if not backend:
            opt_model = model
        else:
            opt_model = torch._dynamo.optimize(backend)(model)
        for batch in eval_dataloader:
            batch = {k: v.to(device) for k, v in batch.items()}
            with torch.no_grad():
                outputs = opt_model(**batch)

            logits = outputs.logits
            predictions = torch.argmax(logits, dim=-1)
            metric.add_batch(predictions=predictions, references=batch["labels"])

        return loss_history, metric.compute()
    else:
        return loss_history, None


def check_loss(ref_loss, res_loss):
    assert len(ref_loss) == len(res_loss)
    length = len(ref_loss)
    x = min(length, 10)
    return sum(res_loss[-x:]) / 10 <= sum(ref_loss[-x:]) / 10 + 0.1


def parse_args():
    parser = argparse.ArgumentParser(
        description="TorchDynamo end to end training/evaluation benchmark"
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="number of epochs to train (default: 10)"
    )
    parser.add_argument(
        "--num-samples",
        type=int,
        default=1000,
        help="number of samples to train/eval (default: 1000)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=8,
        help="input batch size for training (default: 8)",
    )
    parser.add_argument(
        "--lr", type=float, default=5e-5, help="learning rate (default: 5e-5)"
    )
    parser.add_argument(
        "--backend",
        choices=torch._dynamo.list_backends(exclude_tags=None),
        default="inductor",
        help="train/evaluate model with a given backend (default: inductor)",
    )
    parser.add_argument(
        "--optimizer",
        default="Adam",
        help="train model using a given optimizer (default: Adam)",
    )
    parser.add_argument(
        "--evaluation",
        action="store_true",
        help="running evaluation after model training",
    )
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    train_dataloader, eval_dataloader = data_processing(
        args.num_samples, args.batch_size
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        "bert-base-cased", num_labels=5
    )
    optimizer_cls = getattr(sys.modules["torch.optim"], args.optimizer)
    if "capturable" in inspect.signature(optimizer_cls).parameters.keys():
        optimizer = optimizer_cls(model.parameters(), lr=args.lr, capturable=True)
    else:
        optimizer = optimizer_cls(model.parameters(), lr=args.lr)
    native_start = time.time()
    ref_loss, accuracy = model_training_evaluation(
        None,
        train_dataloader,
        eval_dataloader,
        model,
        optimizer,
        args.epochs,
        args.evaluation,
    )
    native_end = time.time()
    res_loss, accuracy = model_training_evaluation(
        args.backend,
        train_dataloader,
        eval_dataloader,
        model,
        optimizer,
        args.epochs,
        args.evaluation,
    )
    dynamo_end = time.time()
    if check_loss(ref_loss, res_loss):
        print(
            "[PASSED] TorchDynamo end to end training loss is less than or equal to native PyTorch"
        )
    else:
        print(
            "[FAILED] TorchDynamo end to end training loss is greater than native Pytorch"
        )
    if args.evaluation:
        print(f"Model accuracy: {accuracy}")
    native_elapsed = native_end - native_start
    dynamo_elapsed = dynamo_end - native_end
    print(
        f"Train model on {args.epochs} epochs with backend {args.backend} and optimizer {args.optimizer}:"
    )
    print(f"PyTorch spent {timedelta(seconds=native_elapsed/args.epochs)} per epoch")
    print(
        f"TorchDynamo spent {timedelta(seconds=dynamo_elapsed/args.epochs)} per epoch"
    )


if __name__ == "__main__":
    main()