1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
from typing import Tuple
import torch
from torch import Tensor
def milstm_cell(x, hx, cx, w_ih, w_hh, alpha, beta_i, beta_h, bias):
Wx = x.mm(w_ih.t())
Uz = hx.mm(w_hh.t())
# Section 2.1 in https://arxiv.org/pdf/1606.06630.pdf
gates = alpha * Wx * Uz + beta_i * Wx + beta_h * Uz + bias
# Same as LSTMCell after this point
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = ingate.sigmoid()
forgetgate = forgetgate.sigmoid()
cellgate = cellgate.tanh()
outgate = outgate.sigmoid()
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * cy.tanh()
return hy, cy
def lstm_cell(
input: Tensor,
hidden: Tuple[Tensor, Tensor],
w_ih: Tensor,
w_hh: Tensor,
b_ih: Tensor,
b_hh: Tensor,
) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def flat_lstm_cell(
input: Tensor,
hx: Tensor,
cx: Tensor,
w_ih: Tensor,
w_hh: Tensor,
b_ih: Tensor,
b_hh: Tensor,
) -> Tuple[Tensor, Tensor]:
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell(
igates: Tensor,
hidden: Tuple[Tensor, Tensor],
w_hh: Tensor,
b_ih: Tensor,
b_hh: Tensor,
) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell_no_bias(
igates: Tensor, hidden: Tuple[Tensor, Tensor], w_hh: Tensor, b_hh: Tensor
) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def gru_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
gi = torch.mm(input, w_ih.t()) + b_ih
gh = torch.mm(hidden, w_hh.t()) + b_hh
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
resetgate = torch.sigmoid(i_r + h_r)
inputgate = torch.sigmoid(i_i + h_i)
newgate = torch.tanh(i_n + resetgate * h_n)
hy = newgate + inputgate * (hidden - newgate)
return hy
def rnn_relu_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.relu(igates + hgates)
def rnn_tanh_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.tanh(igates + hgates)
|