File: scratch.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (53 lines) | stat: -rw-r--r-- 1,050 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch


@torch.jit.script
def fn(x, scale, shift):
    return scale * x / shift


@torch.jit.script
def recurrent(x, scale, shift):
    y = x
    for i in range(100):
        y = fn(y, scale, shift)
    return y


x = torch.randn(2, 2, device="cuda")
scale = torch.randn(2, 2, device="cuda", requires_grad=True)
shift = torch.randn(2, 2, device="cuda", requires_grad=True)
inputs = [x, scale, shift]


out = recurrent(x, scale, shift)
recurrent.graph_for(x, scale, shift)


import torch


@torch.jit.script
def recurrent_scaleshift(x, scale, shift):
    y = x
    for i in range(64):
        y = scale * y + shift
    return y


x = torch.randn(2, 2, device="cuda")
scale = torch.randn(2, 2, device="cuda", requires_grad=True)
shift = torch.randn(2, 2, device="cuda", requires_grad=True)
inputs = [x, scale, shift]
out = recurrent_scaleshift(x, scale, shift)
recurrent_scaleshift.graph_for(x, scale, shift)


import torch


x = torch.tensor([])
x.requires_grad = True
x.mean().backward()  # no error triggered
x = x.cuda()
x.mean().backward()