File: audio_text_models.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (157 lines) | stat: -rw-r--r-- 5,009 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torchaudio_models as models
from utils import check_for_functorch, extract_weights, GetterReturnType, load_weights

import torch
from torch import nn, Tensor


has_functorch = check_for_functorch()


def get_wav2letter(device: torch.device) -> GetterReturnType:
    N = 10
    input_frames = 700
    vocab_size = 28
    model = models.Wav2Letter(num_classes=vocab_size)
    criterion = torch.nn.NLLLoss()
    model.to(device)
    params, names = extract_weights(model)

    inputs = torch.rand([N, 1, input_frames], device=device)
    labels = torch.rand(N, 3, device=device).mul(vocab_size).long()

    def forward(*new_params: Tensor) -> Tensor:
        load_weights(model, names, new_params)
        out = model(inputs)

        loss = criterion(out, labels)
        return loss

    return forward, params


def get_deepspeech(device: torch.device) -> GetterReturnType:
    sample_rate = 16000
    window_size = 0.02
    window = "hamming"
    audio_conf = dict(
        sample_rate=sample_rate, window_size=window_size, window=window, noise_dir=None
    )

    N = 10
    num_classes = 10
    spectrogram_size = 161
    # Commented are the original sizes in the code
    seq_length = 500  # 1343
    target_length = 10  # 50
    labels = torch.rand(num_classes, device=device)
    inputs = torch.rand(N, 1, spectrogram_size, seq_length, device=device)
    # Sequence length for each input
    inputs_sizes = (
        torch.rand(N, device=device).mul(seq_length * 0.1).add(seq_length * 0.8)
    )
    targets = torch.rand(N, target_length, device=device)
    targets_sizes = torch.full((N,), target_length, dtype=torch.int, device=device)

    model = models.DeepSpeech(
        rnn_type=nn.LSTM,
        labels=labels,
        rnn_hidden_size=1024,
        nb_layers=5,
        audio_conf=audio_conf,
        bidirectional=True,
    )

    if has_functorch:
        from functorch.experimental import replace_all_batch_norm_modules_

        replace_all_batch_norm_modules_(model)

    model = model.to(device)
    criterion = nn.CTCLoss()
    params, names = extract_weights(model)

    def forward(*new_params: Tensor) -> Tensor:
        load_weights(model, names, new_params)
        out, out_sizes = model(inputs, inputs_sizes)
        out = out.transpose(0, 1)  # For ctc loss

        loss = criterion(out, targets, out_sizes, targets_sizes)
        return loss

    return forward, params


def get_transformer(device: torch.device) -> GetterReturnType:
    # For most SOTA research, you would like to have embed to 720, nhead to 12, bsz to 64, tgt_len/src_len to 128.
    N = 64
    seq_length = 128
    ntoken = 50
    model = models.TransformerModel(
        ntoken=ntoken, ninp=720, nhead=12, nhid=2048, nlayers=2
    )
    model.to(device)

    if has_functorch:
        # disable dropout for consistency checking
        model.eval()

    criterion = nn.NLLLoss()
    params, names = extract_weights(model)

    data = torch.rand(N, seq_length + 1, device=device).mul(ntoken).long()
    inputs = data.narrow(1, 0, seq_length)
    targets = data.narrow(1, 1, seq_length)

    def forward(*new_params: Tensor) -> Tensor:
        load_weights(model, names, new_params)
        out = model(inputs)

        loss = criterion(
            out.reshape(N * seq_length, ntoken), targets.reshape(N * seq_length)
        )
        return loss

    return forward, params


def get_multiheadattn(device: torch.device) -> GetterReturnType:
    # From https://github.com/pytorch/text/blob/master/test/data/test_modules.py#L10
    embed_dim, nhead, tgt_len, src_len, bsz = 10, 5, 6, 10, 64
    # Build torchtext MultiheadAttention module
    in_proj = models.InProjContainer(
        torch.nn.Linear(embed_dim, embed_dim, bias=False),
        torch.nn.Linear(embed_dim, embed_dim, bias=False),
        torch.nn.Linear(embed_dim, embed_dim, bias=False),
    )

    model = models.MultiheadAttentionContainer(
        nhead,
        in_proj,
        models.ScaledDotProduct(),
        torch.nn.Linear(embed_dim, embed_dim, bias=False),
    )
    model.to(device)
    params, names = extract_weights(model)

    query = torch.rand((tgt_len, bsz, embed_dim), device=device)
    key = value = torch.rand((src_len, bsz, embed_dim), device=device)
    attn_mask_2D = torch.randint(0, 2, (tgt_len, src_len), device=device).to(torch.bool)
    bias_k = bias_v = torch.rand((1, 1, embed_dim), device=device)

    attn_mask = torch.stack([attn_mask_2D] * (bsz * nhead))
    bias_k = bias_k.repeat(1, bsz, 1).reshape(1, bsz * nhead, -1)
    bias_v = bias_v.repeat(1, bsz, 1).reshape(1, bsz * nhead, -1)

    def forward(*new_params: Tensor) -> Tensor:
        load_weights(model, names, new_params)
        mha_output, attn_weights = model(
            query, key, value, attn_mask=attn_mask, bias_k=bias_k, bias_v=bias_v
        )

        # Don't test any specific loss, just backprop ones for both outputs
        loss = mha_output.sum() + attn_weights.sum()

        return loss

    return forward, params