File: plot_speedups.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (24 lines) | stat: -rw-r--r-- 625 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pandas


df = pandas.read_csv("perf.csv")

ops = pandas.unique(df["operator"])
nops = len(ops)
pivot_op_shape = df.pivot_table(
    values="time", index=["operator", "shape"], columns=["fuser"]
)
pivot_speedups = (pivot_op_shape.T / pivot_op_shape["eager"]).T

import matplotlib.pyplot as plt


plt.rcParams["figure.figsize"] = (20, 100)
fig, axs = plt.subplots(nops)
plt.subplots_adjust(hspace=0.5)
for idx, op in enumerate(ops):
    op_speedups = pivot_speedups.T[op].T
    op_speedups.plot(ax=axs[idx], kind="bar", ylim=(0, 2), rot=45)
    axs[idx].set_title(op)
    axs[idx].set_xlabel("")
plt.savefig("perf.png")