1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
import argparse
import csv
import dataclasses
import json
import os
from generate import (
get_arch_name,
run_llama2_7b_bf16,
run_llama2_7b_int8,
run_mixtral_8x7b_int8,
)
import torch
import torch.nn as nn
from torch._inductor.runtime.benchmarking import benchmarker
from torch.utils.flop_counter import FlopCounterMode
WARMUP_ITER = 5
A100_40G_BF16_TFLOPS = 312
@dataclasses.dataclass
class Experiment:
name: str
metric: str
target: float
actual: float
dtype: str
device: str
arch: str # GPU name for CUDA or CPU arch for CPU
is_model: bool = False
class SimpleMLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, dtype):
super().__init__()
self.layers = nn.ModuleList(
[
nn.Linear(input_dim, hidden_dim, dtype=dtype),
nn.LayerNorm(hidden_dim, dtype=dtype),
nn.Linear(hidden_dim, output_dim, dtype=dtype),
nn.LayerNorm(output_dim, dtype=dtype),
]
)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def run_mlp_layer_norm_gelu(device: str = "cuda"):
dtype_flops_utilization_map = {
torch.bfloat16: "0.8",
}
input_shapes = [1024, 4096, 8192, 16384]
intermediate_size = 14336
results = []
for dtype, expected_flops_utilization in dtype_flops_utilization_map.items():
flops_utilization = 0
for D in input_shapes:
mod = SimpleMLP(
input_dim=D, hidden_dim=intermediate_size, output_dim=D, dtype=dtype
).to(device)
x = torch.randn(D, device=device, dtype=torch.bfloat16)
with FlopCounterMode(display=False) as mode:
mod(x)
flops = mode.get_total_flops()
compiled_mod = torch.compile(mod, dynamic=False)
for _ in range(WARMUP_ITER):
compiled_mod(x)
benchmark_fn = (
benchmarker.benchmark_gpu
if device == "cuda"
else benchmarker.benchmark_cpu
)
us_per_iter = benchmark_fn(lambda: compiled_mod(x)) * 1000
flops_utilization += us_per_iter * flops / 1e9 / A100_40G_BF16_TFLOPS
flops_utilization = flops_utilization / len(input_shapes)
dtype_str = str(dtype).replace("torch.", "")
results.append(
Experiment(
"mlp_layer_norm_gelu",
"flops_utilization",
expected_flops_utilization,
f"{flops_utilization:.02f}",
dtype_str,
device,
get_arch_name(),
)
)
return results
def run_layer_norm(device: str = "cuda"):
dtype_memory_bandwidth_map = {
torch.bfloat16: "950",
}
input_shapes = [1024, 4096, 8192, 16384]
BS = 4096
results = []
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
memory_bandwidth = 0
for D in input_shapes:
mod = nn.LayerNorm(D).to(device)
x = torch.randn(BS, D, device=device, dtype=dtype)
compiled_mod = torch.compile(mod, dynamic=False)
for _ in range(WARMUP_ITER):
compiled_mod(x)
benchmark_fn = (
benchmarker.benchmark_gpu
if device == "cuda"
else benchmarker.benchmark_cpu
)
us_per_iter = benchmark_fn(lambda: compiled_mod(x)) * 1000
memory_bandwidth += (1e6 / us_per_iter) * 2 * BS * D * dtype.itemsize / 1e9
memory_bandwidth = memory_bandwidth / len(input_shapes)
dtype_str = str(dtype).replace("torch.", "")
results.append(
Experiment(
"layer_norm",
"memory_bandwidth(GB/s)",
expected_memory_bandwidth,
f"{memory_bandwidth:.02f}",
dtype_str,
device,
get_arch_name(),
)
)
return results
@torch._inductor.config.patch(coordinate_descent_tuning=True)
def run_gather_gemv(device: str = "cuda"):
E = 8
dtype_memory_bandwidth_map = {
torch.int8: "990",
torch.bfloat16: "1060",
}
input_shapes = [1024, 4096, 8192, 16384]
results = []
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
memory_bandwidth = 0
for D in input_shapes:
def gather_gemv(W, score_idxs, x):
return W[score_idxs].to(x.dtype) @ x
W = torch.randn(E, D, D, device=device).to(dtype=dtype)
x = torch.randn(D, device=device, dtype=torch.bfloat16)
score_idxs = torch.tensor([3, 5], device=device)
compiled_fn = torch.compile(gather_gemv, dynamic=False)
for _ in range(WARMUP_ITER):
compiled_fn(W, score_idxs, x)
benchmark_fn = (
benchmarker.benchmark_gpu
if device == "cuda"
else benchmarker.benchmark_cpu
)
us_per_iter = benchmark_fn(lambda: compiled_fn(W, score_idxs, x)) * 1000
memory_bandwidth += (1e6 / us_per_iter) * 2 * D * D * dtype.itemsize / 1e9
memory_bandwidth = memory_bandwidth / len(input_shapes)
dtype_str = str(dtype).replace("torch.", "")
results.append(
Experiment(
"gather_gemv",
"memory_bandwidth(GB/s)",
expected_memory_bandwidth,
f"{memory_bandwidth:.02f}",
dtype_str,
device,
get_arch_name(),
)
)
return results
@torch._inductor.config.patch(coordinate_descent_tuning=True)
def run_gemv(device: str = "cuda"):
dtype_memory_bandwidth_map = {
torch.int8: "870",
torch.bfloat16: "990",
}
input_shapes = [1024, 4096, 8192, 16384]
results = []
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
memory_bandwidth = 0
for D in input_shapes:
def gemv(W, x):
return W.to(x.dtype) @ x
W = torch.randn(D, D, device=device).to(dtype=dtype)
x = torch.randn(D, device=device, dtype=torch.bfloat16)
compiled_fn = torch.compile(gemv, dynamic=False)
for _ in range(WARMUP_ITER):
compiled_fn(W, x)
benchmark_fn = (
benchmarker.benchmark_gpu
if device == "cuda"
else benchmarker.benchmark_cpu
)
us_per_iter = benchmark_fn(lambda: compiled_fn(W, x)) * 1000
memory_bandwidth += (1e6 / us_per_iter) * D * D * dtype.itemsize / 1e9
memory_bandwidth = memory_bandwidth / len(input_shapes)
dtype_str = str(dtype).replace("torch.", "")
results.append(
Experiment(
"gemv",
"memory_bandwidth(GB/s)",
expected_memory_bandwidth,
f"{memory_bandwidth:.02f}",
dtype_str,
device,
get_arch_name(),
)
)
return results
def output_csv(output_file, headers, row):
if os.path.exists(output_file):
with open(output_file) as fd:
lines = list(csv.reader(fd)) or [[]]
if headers and len(headers) > len(lines[0]):
# if prior results failed the header might not be filled in yet
lines[0] = headers
else:
headers = lines[0]
else:
lines = [headers]
if output_file != DEFAULT_OUTPUT_FILE:
os.makedirs(os.path.dirname(output_file), exist_ok=True)
lines.append([(f"{x:.6f}" if isinstance(x, float) else x) for x in row])
with open(output_file, "w") as fd:
writer = csv.writer(fd, lineterminator="\n")
for line in lines:
writer.writerow(list(line) + ["0"] * (len(headers) - len(line)))
def output_json(output_file, headers, row):
"""
Write the result into JSON format, so that it can be uploaded to the benchmark database
to be displayed on OSS dashboard. The JSON format is defined at
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
mapping_headers = {headers[i]: v for i, v in enumerate(row)}
record = {
"benchmark": {
"name": "PyTorch gpt-fast benchmark",
"mode": "inference",
"dtype": mapping_headers["dtype"],
"extra_info": {
"device": mapping_headers["device"],
"arch": mapping_headers["arch"],
},
},
"model": {
"name": mapping_headers["name"],
"type": "OSS model" if mapping_headers["is_model"] else "micro-benchmark",
"origins": ["pytorch"],
},
"metric": {
"name": mapping_headers["metric"],
"benchmark_values": [mapping_headers["actual"]],
"target_value": mapping_headers["target"],
},
}
with open(f"{os.path.splitext(output_file)[0]}.json", "a") as f:
print(json.dumps(record), file=f)
DEFAULT_OUTPUT_FILE = "gpt_fast_benchmark.csv"
all_experiments = {
# A list of GPT models: LlaMa, Mixtral, etc.
# waiting for A100-80G machine to be available in CI
# https://github.com/pytorch/pytorch/actions/runs/12018005803/job/33503683582?pr=140627
# before we can turn on autoquant
# or alterantively, we can save the model after autoquant and just load here to track
# the performance
# run_llama2_7b_autoquant,
run_llama2_7b_bf16,
run_llama2_7b_int8,
run_mixtral_8x7b_int8,
# run_mixtral_8x7b_autoquant,
# A list of micro-benchmarks.
run_mlp_layer_norm_gelu,
run_layer_norm,
run_gather_gemv,
run_gemv,
}
def main(output_file=DEFAULT_OUTPUT_FILE):
results = []
for func in all_experiments:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
except AssertionError:
# This happens when torch is compiled with CUDA turning off completely
device = "cpu"
torch.compiler.cudagraph_mark_step_begin()
lst = func(device)
for x in lst:
results.append(dataclasses.astuple(x))
headers = [field.name for field in dataclasses.fields(Experiment)]
for row in results:
output_csv(output_file, headers, row)
# Also write the output in JSON format so that it can be ingested into the OSS benchmark database
output_json(output_file, headers, row)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run experiments.")
parser.add_argument(
"--output",
default=DEFAULT_OUTPUT_FILE,
help="Set the output CSV file to save the benchmark results",
)
args = parser.parse_args()
main(output_file=args.output)
|