1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
import dataclasses
import itertools
import platform
import time
from typing import Optional, Tuple
import torchao
from mixtral_moe_model import ConditionalFeedForward, Transformer as MixtralMoE
from mixtral_moe_quantize import (
ConditionalFeedForwardInt8,
WeightOnlyInt8QuantHandler as MixtralMoEWeightOnlyInt8QuantHandler,
)
from model import Transformer as LLaMA
from quantize import WeightOnlyInt8QuantHandler as LLaMAWeightOnlyInt8QuantHandler
import torch
import torch._inductor.config
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.assert_indirect_indexing = False
compiled = False
@dataclasses.dataclass
class GPTModelConfig:
name: str
module: type
mode: Optional[str]
quantizer: type
token_per_sec: float
memory_bandwidth: float
compilation_time: float
batch_size: Optional[int] = None
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize(device)
elif "cpu" in device:
pass
else:
print(f"device={device} is not yet suppported")
def get_arch_name() -> str:
if torch.cuda.is_available():
return torch.cuda.get_device_name()
else:
# This returns x86_64 or arm64 (for aarch64)
return platform.machine()
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(
model: torch.nn.Module, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs
) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(
model: torch.nn.Module, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(
model: torch.nn.Module,
cur_token: torch.Tensor,
input_pos: torch.Tensor,
num_new_tokens: int,
**sampling_kwargs,
):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with torch.nn.attention.sdpa_kernel(
torch.nn.attention.SDPBackend.MATH
): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, **sampling_kwargs
)
input_pos += 1
new_tokens.append(next_token.clone())
new_probs.append(next_prob.clone())
cur_token = next_token.view(1, -1)
return new_tokens, new_probs
@torch.no_grad()
def generate(
model: torch.nn.Module, prompt: torch.Tensor, max_new_tokens: int, **sampling_kwargs
) -> torch.Tensor:
device, dtype = prompt.device, prompt.dtype
T = prompt.size(0)
T_new = T + max_new_tokens
max_seq_length = min(T_new, model.config.block_size)
with torch.device(device):
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs)
seq[T] = next_token
input_pos = torch.tensor([T], device=device, dtype=torch.int)
generated_tokens, _ = decode_n_tokens(
model, next_token.view(1, -1), input_pos, max_new_tokens - 1, **sampling_kwargs
)
seq[T + 1 :] = torch.cat(generated_tokens)
return seq
def _load_model(x: GPTModelConfig, device="cuda", precision=torch.bfloat16):
with torch.device("meta"):
model = x.module.from_name(x.name)
model = model.to(dtype=precision)
if x.mode == "int8":
print("Using int8 weight-only quantization!")
model = x.quantizer(model).convert_for_runtime()
state_dict = model.state_dict()
for k, v in state_dict.items():
state_dict[k] = torch.nn.Parameter(
torch.randn(v.shape, device=device).to(dtype=v.dtype),
requires_grad=v.requires_grad,
)
model.load_state_dict(state_dict, assign=True)
return model.eval()
# Only count activated parameters and buffers.
def _get_model_size(model):
model_size = 0
for name, child in model.named_children():
if not isinstance(child, torch.nn.Embedding):
model_size += sum(
p.numel() * p.dtype.itemsize
for p in itertools.chain(child.parameters(), child.buffers())
)
# Remove the inactivated experts from the model size if this is mixture of experts
# architecture, since only activated experts are loaded.
if hasattr(model.config, "num_experts"):
config = model.config
for submodule in model.modules():
if isinstance(
submodule, (ConditionalFeedForward, ConditionalFeedForwardInt8)
):
model_size -= (
sum(
p.numel() * p.dtype.itemsize
for p in itertools.chain(
submodule.parameters(), child.buffers()
)
)
* (config.num_experts - config.num_activated_experts)
/ config.num_experts
)
return model_size
def run_experiment(
x: GPTModelConfig,
num_samples: int = 5,
max_new_tokens: int = 200,
top_k: int = 200,
temperature: float = 0.8,
device: str = "cuda",
) -> None:
print(f"Loading model {x.name}")
t0 = time.time()
model = _load_model(x, device=device)
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
prompt = torch.tensor(
[1, 15043, 29892, 590, 1024, 338], device=device, dtype=torch.int32
)
prompt_length = prompt.size(0)
torch.manual_seed(1234)
model_size = _get_model_size(model)
aggregate_metrics = {"tokens_per_sec": [], "memory_bandwidth": []}
start = -1
compilation_time = None
if x.mode == "autoquant":
print("Using autoquant")
model = torchao.autoquant(model, manual=True, error_on_unseen=False)
generate(model, prompt, max_new_tokens, temperature=temperature, top_k=top_k)
model.finalize_autoquant()
if x.mode == "autoquant_v2":
print("Using autoquant_v2")
from torchao.prototype.quantization.autoquant_v2 import autoquant_v2
p = prompt.view(1, -1)
T = prompt.size(0)
T_new = T + max_new_tokens
max_seq_length = min(T_new, model.config.block_size)
input_pos = torch.arange(0, T, device=device)
example_input = (p, input_pos)
with torch.device(device):
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
model = autoquant_v2(
model,
manual=True,
error_on_unseen=False,
example_input=example_input,
batch_size=x.batch_size,
)
torch.compiler.cudagraph_mark_step_begin()
generate(model, prompt, max_new_tokens, temperature=temperature, top_k=top_k)
model.finalize_autoquant()
global decode_one_token, prefill, compiled
if not compiled:
compiled = True
decode_one_token = torch.compile(
decode_one_token, mode="reduce-overhead", fullgraph=True
)
prefill = torch.compile(prefill, fullgraph=True)
for i in range(start, num_samples):
device_sync(device=device) # MKG
torch.compiler.cudagraph_mark_step_begin()
t0 = time.perf_counter()
y = generate(
model, prompt, max_new_tokens, temperature=temperature, top_k=top_k
)
if i == -1:
compilation_time = time.perf_counter() - t0
print(f"Compilation time: {compilation_time:.2f} seconds")
continue
device_sync(device=device) # MKG
t = time.perf_counter() - t0
tokens_generated = y.size(0) - prompt_length
tokens_sec = tokens_generated / t
aggregate_metrics["tokens_per_sec"].append(tokens_sec)
aggregate_metrics["memory_bandwidth"].append(model_size * tokens_sec / 1e9)
token_per_sec = torch.mean(torch.tensor(aggregate_metrics["tokens_per_sec"])).item()
memory_bandwidth = torch.mean(
torch.tensor(aggregate_metrics["memory_bandwidth"])
).item()
print(f"Average tokens/sec: {token_per_sec:.2f} tokens/sec")
print(f"Average bandwidth achieved: {memory_bandwidth:.02f} GB/s")
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")
return token_per_sec, memory_bandwidth, compilation_time
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_llama2_7b_bf16(device: str = "cuda"):
from benchmark import Experiment
model = GPTModelConfig(
"Llama-2-7b-chat-hf",
LLaMA,
"bfloat16",
LLaMAWeightOnlyInt8QuantHandler,
94,
1253,
133,
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_llama2_7b_int8(device: str = "cuda"):
from benchmark import Experiment
model = GPTModelConfig(
"Llama-2-7b-chat-hf",
LLaMA,
"int8",
LLaMAWeightOnlyInt8QuantHandler,
144,
957,
136,
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_mixtral_8x7b_int8(device: str = "cuda"):
from benchmark import Experiment
# We reduced the original number of layers from 32 to 16 to adapt CI memory limitation.
model = GPTModelConfig(
"Mixtral-8x7B-v0.1",
MixtralMoE,
"int8",
MixtralMoEWeightOnlyInt8QuantHandler,
175,
1130,
133,
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_llama2_7b_autoquant(device: str = "cuda"):
from benchmark import Experiment
model = GPTModelConfig(
"Llama-2-7b-chat-hf",
LLaMA,
"autoquant",
None,
144,
957,
136,
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_mixtral_8x7b_autoquant(device: str = "cuda"):
from benchmark import Experiment
# We reduced the original number of layers from 32 to 16 to adapt CI memory limitation.
model = GPTModelConfig(
"Mixtral-8x7B-v0.1",
MixtralMoE,
"autoquant",
None,
175,
1130,
133,
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_llama2_7b_autoquant_v2(device: str = "cuda"):
from benchmark import Experiment
model = GPTModelConfig(
"Llama-2-7b-chat-hf",
LLaMA,
"autoquant_v2",
None,
144,
957,
136,
6, # batch_size
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
# token_per_sec and memory_bandwidth target numbers are for A100-40GB, which are different from the typical A100-80GB.
def run_mixtral_8x7b_autoquant_v2(device: str = "cuda"):
from benchmark import Experiment
# We reduced the original number of layers from 32 to 16 to adapt CI memory limitation.
model = GPTModelConfig(
"Mixtral-8x7B-v0.1",
MixtralMoE,
"autoquant_v2",
None,
175,
1130,
133,
6, # batch_size
)
token_per_sec, memory_bandwidth, compilation_time = run_experiment(
model, device=device
)
return [
Experiment(
model.name,
"token_per_sec",
model.token_per_sec,
f"{token_per_sec:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"memory_bandwidth(GB/s)",
model.memory_bandwidth,
f"{memory_bandwidth:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
Experiment(
model.name,
"compilation_time(s)",
model.compilation_time,
f"{compilation_time:.02f}",
model.mode,
device,
get_arch_name(),
True,
),
]
|