File: mixtral_moe_quantize.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (187 lines) | stat: -rw-r--r-- 6,956 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# flake8: noqa: E266, C417, B950
from mixtral_moe_model import ConditionalFeedForward

import torch
import torch.nn as nn
import torch.nn.functional as F


##### Quantization Primitives ######


def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
    # assumes symmetric quantization
    # assumes axis == 0
    # assumes dense memory format
    # TODO(future): relax ^ as needed

    # default setup for affine quantization of activations
    eps = torch.finfo(torch.float32).eps

    # get min and max
    min_val, max_val = torch.aminmax(x, dim=1)

    # calculate scales and zero_points based on min and max
    # reference: https://fburl.com/code/srbiybme
    min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
    max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
    device = min_val_neg.device

    # reference: https://fburl.com/code/4wll53rk
    max_val_pos = torch.max(-min_val_neg, max_val_pos)
    scales = max_val_pos / (float(quant_max - quant_min) / 2)
    # ensure scales is the same dtype as the original tensor
    scales = torch.clamp(scales, min=eps).to(x.dtype)
    zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)

    # quantize based on qmin/qmax/scales/zp
    # reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
    x_div = x / scales.unsqueeze(-1)
    x_round = torch.round(x_div)
    x_zp = x_round + zero_points.unsqueeze(-1)
    quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)

    return quant, scales, zero_points


##### Weight-only int8 per-channel quantized code ######


def replace_linear_weight_only_int8_per_channel(module):
    for name, child in module.named_children():
        if isinstance(child, nn.Linear) and name != "gate":
            setattr(
                module,
                name,
                WeightOnlyInt8Linear(
                    child.in_features, child.out_features, target_dtype=torch.int8
                ),
            )
        elif isinstance(child, ConditionalFeedForward):
            num_experts, intermediate_size, dim = child.w1.shape
            setattr(
                module,
                name,
                ConditionalFeedForwardInt8(
                    num_experts, intermediate_size, dim, target_dtype=torch.int8
                ),
            )
        else:
            replace_linear_weight_only_int8_per_channel(child)


class WeightOnlyInt8QuantHandler:
    def __init__(self, mod):
        self.mod = mod

    @torch.no_grad()
    def create_quantized_state_dict(self):
        cur_state_dict = self.mod.state_dict()
        for fqn, mod in self.mod.named_modules():
            if isinstance(mod, torch.nn.Linear) and not fqn.endswith(".gate"):
                int8_weight, scales, _ = dynamically_quantize_per_channel(
                    mod.weight.float(), -128, 127, torch.int8
                )
                cur_state_dict[f"{fqn}.weight"] = int8_weight
                cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
            elif isinstance(mod, ConditionalFeedForward):
                for weight_idx in range(0, 3):
                    weight_name = f"w{weight_idx + 1}"
                    scales_name = f"scales{weight_idx + 1}"
                    weight = getattr(mod, weight_name)
                    num_experts, intermediate_size, dim = weight.shape

                    bit8_weight_list = []
                    scales_list = []
                    for expert_idx in range(num_experts):
                        bit8_weight, scales, _ = dynamically_quantize_per_channel(
                            weight[expert_idx].float(), -128, 127, torch.int8
                        )
                        bit8_weight_list.append(
                            bit8_weight.reshape(1, intermediate_size, dim)
                        )
                        scales_list.append(scales.reshape(1, intermediate_size))

                    cur_state_dict[f"{fqn}.{weight_name}"] = torch.cat(
                        bit8_weight_list, dim=0
                    )
                    cur_state_dict[f"{fqn}.{scales_name}"] = torch.cat(
                        scales_list, dim=0
                    )

        return cur_state_dict

    def convert_for_runtime(self):
        replace_linear_weight_only_int8_per_channel(self.mod)
        return self.mod


class WeightOnlyInt8Linear(torch.nn.Module):
    __constants__ = ["in_features", "out_features"]
    in_features: int
    out_features: int
    weight: torch.Tensor

    def __init__(
        self,
        in_features: int,
        out_features: int,
        bias: bool = True,
        device=None,
        dtype=None,
        target_dtype=None,
    ) -> None:
        assert target_dtype is not None
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer(
            "weight", torch.empty((out_features, in_features), dtype=target_dtype)
        )
        self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales


class ConditionalFeedForwardInt8(nn.Module):
    def __init__(self, num_experts, intermediate_size, dim, target_dtype):
        super().__init__()

        self.target_dtype = target_dtype

        self.register_buffer(
            "w1", torch.empty(num_experts, intermediate_size, dim, dtype=target_dtype)
        )
        self.register_buffer(
            "w2", torch.empty(num_experts, dim, intermediate_size, dtype=target_dtype)
        )
        self.register_buffer(
            "w3", torch.empty(num_experts, intermediate_size, dim, dtype=target_dtype)
        )

        self.register_buffer(
            "scales1", torch.empty(num_experts, intermediate_size, dtype=torch.bfloat16)
        )
        self.register_buffer(
            "scales2", torch.empty(num_experts, dim, dtype=torch.bfloat16)
        )
        self.register_buffer(
            "scales3", torch.empty(num_experts, intermediate_size, dtype=torch.bfloat16)
        )

    def forward(self, x, expert_indices):
        w1_weights = self.w1.to(x.dtype)[expert_indices]  # [T, A, D, D]
        w3_weights = self.w3.to(x.dtype)[expert_indices]  # [T, A, D, D]
        w2_weights = self.w2.to(x.dtype)[expert_indices]
        x1 = F.silu(
            torch.einsum("ti,taoi -> tao", x, w1_weights)
            * self.scales1[expert_indices].to(x.dtype)
        )
        x3 = torch.einsum("ti, taoi -> tao", x, w3_weights) * self.scales3[
            expert_indices
        ].to(x.dtype)
        expert_outs = torch.einsum(
            "tao, taio -> tai", (x1 * x3), w2_weights
        ) * self.scales2[expert_indices].to(x.dtype)  # [T, A, D, D]
        return expert_outs