File: model.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (292 lines) | stat: -rw-r--r-- 9,842 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# flake8: noqa: E266, C417, B950
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F


def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)


@dataclass
class ModelArgs:
    block_size: int = 2048
    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    dim: int = 4096
    intermediate_size: int = None
    n_local_heads: int = -1
    head_dim: int = 64
    rope_base: float = 10000
    norm_eps: float = 1e-5

    def __post_init__(self):
        if self.n_local_heads == -1:
            self.n_local_heads = self.n_head
        if self.intermediate_size is None:
            hidden_dim = 4 * self.dim
            n_hidden = int(2 * hidden_dim / 3)
            self.intermediate_size = find_multiple(n_hidden, 256)
        self.head_dim = self.dim // self.n_head

    @classmethod
    def from_name(cls, name: str):
        if name in transformer_configs:
            return cls(**transformer_configs[name])
        # fuzzy search
        config = [
            config
            for config in transformer_configs
            if config in str(name).upper() or config in str(name)
        ]

        # We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
        # take longer name (as it have more symbols matched)
        if len(config) > 1:
            config.sort(key=len, reverse=True)
            assert len(config[0]) != len(
                config[1]
            ), name  # make sure only one 'best' match

        return cls(**transformer_configs[config[0]])


transformer_configs = {
    "CodeLlama-7b-Python-hf": dict(
        block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000
    ),
    "7B": dict(n_layer=32, n_head=32, dim=4096),
    "13B": dict(n_layer=40, n_head=40, dim=5120),
    "30B": dict(n_layer=60, n_head=52, dim=6656),
    "34B": dict(
        n_layer=48,
        n_head=64,
        dim=8192,
        vocab_size=32000,
        n_local_heads=8,
        intermediate_size=22016,
        rope_base=1000000,
    ),  # CodeLlama-34B-Python-hf
    "70B": dict(
        n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672
    ),
    "Mistral-7B": dict(
        n_layer=32,
        n_head=32,
        n_local_heads=8,
        dim=4096,
        intermediate_size=14336,
        vocab_size=32000,
    ),
}


class KVCache(nn.Module):
    def __init__(
        self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16
    ):
        super().__init__()
        cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
        self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2]

        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val
        v_out[:, :, input_pos] = v_val

        return k_out, v_out


class Transformer(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.config = config

        self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
        self.layers = nn.ModuleList(
            TransformerBlock(config) for _ in range(config.n_layer)
        )
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.output = nn.Linear(config.dim, config.vocab_size, bias=False)

        self.freqs_cis: Optional[Tensor] = None
        self.mask_cache: Optional[Tensor] = None
        self.max_batch_size = -1
        self.max_seq_length = -1

    def setup_caches(self, max_batch_size, max_seq_length):
        if (
            self.max_seq_length >= max_seq_length
            and self.max_batch_size >= max_batch_size
        ):
            return
        head_dim = self.config.dim // self.config.n_head
        max_seq_length = find_multiple(max_seq_length, 8)
        self.max_seq_length = max_seq_length
        self.max_batch_size = max_batch_size
        for b in self.layers:
            b.attention.kv_cache = KVCache(
                max_batch_size, max_seq_length, self.config.n_local_heads, head_dim
            )

        self.freqs_cis = precompute_freqs_cis(
            self.config.block_size,
            self.config.dim // self.config.n_head,
            self.config.rope_base,
        )
        self.causal_mask = torch.tril(
            torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)
        )

    def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor:
        assert self.freqs_cis is not None, "Caches must be initialized first"
        mask = self.causal_mask[None, None, input_pos]
        freqs_cis = self.freqs_cis[input_pos]
        x = self.tok_embeddings(idx)

        for i, layer in enumerate(self.layers):
            x = layer(x, input_pos, freqs_cis, mask)
        x = self.norm(x)
        logits = self.output(x)
        return logits

    @classmethod
    def from_name(cls, name: str):
        return cls(ModelArgs.from_name(name))


class TransformerBlock(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
        self.attention_norm = RMSNorm(config.dim, config.norm_eps)

    def forward(
        self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor
    ) -> Tensor:
        h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Attention(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        assert config.dim % config.n_head == 0

        total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        self.n_head = config.n_head
        self.head_dim = config.head_dim
        self.n_local_heads = config.n_local_heads
        self.dim = config.dim
        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict, prefix, *args):
        if prefix + "wq.weight" in state_dict:
            wq = state_dict.pop(prefix + "wq.weight")
            wk = state_dict.pop(prefix + "wk.weight")
            wv = state_dict.pop(prefix + "wv.weight")
            state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        mask: Tensor,
        input_pos: Optional[Tensor] = None,
    ) -> Tensor:
        bsz, seqlen, _ = x.shape

        kv_size = self.n_local_heads * self.head_dim
        q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        q = q.view(bsz, seqlen, self.n_head, self.head_dim)
        k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)

        q = apply_rotary_emb(q, freqs_cis)
        k = apply_rotary_emb(k, freqs_cis)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        if self.kv_cache is not None:
            k, v = self.kv_cache.update(input_pos, k, v)

        k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        y = self.wo(y)
        return y


class FeedForward(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
    freqs = 1.0 / (
        base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
    )
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
    return cache.to(dtype=torch.bfloat16)


def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)