1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
import argparse
import asyncio
import os.path
import subprocess
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from queue import Empty
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing as mp
class FrontendWorker(mp.Process):
"""
This worker will send requests to a backend process, and measure the
throughput and latency of those requests as well as GPU utilization.
"""
def __init__(
self,
metrics_dict,
request_queue,
response_queue,
read_requests_event,
batch_size,
num_iters=10,
):
super().__init__()
self.metrics_dict = metrics_dict
self.request_queue = request_queue
self.response_queue = response_queue
self.read_requests_event = read_requests_event
self.warmup_event = mp.Event()
self.batch_size = batch_size
self.num_iters = num_iters
self.poll_gpu = True
self.start_send_time = None
self.end_recv_time = None
def _run_metrics(self, metrics_lock):
"""
This function will poll the response queue until it has received all
responses. It records the startup latency, the average, max, min latency
as well as througput of requests.
"""
warmup_response_time = None
response_times = []
for i in range(self.num_iters + 1):
response, request_time = self.response_queue.get()
if warmup_response_time is None:
self.warmup_event.set()
warmup_response_time = time.time() - request_time
else:
response_times.append(time.time() - request_time)
self.end_recv_time = time.time()
self.poll_gpu = False
response_times = np.array(response_times)
with metrics_lock:
self.metrics_dict["warmup_latency"] = warmup_response_time
self.metrics_dict["average_latency"] = response_times.mean()
self.metrics_dict["max_latency"] = response_times.max()
self.metrics_dict["min_latency"] = response_times.min()
self.metrics_dict["throughput"] = (self.num_iters * self.batch_size) / (
self.end_recv_time - self.start_send_time
)
def _run_gpu_utilization(self, metrics_lock):
"""
This function will poll nvidia-smi for GPU utilization every 100ms to
record the average GPU utilization.
"""
def get_gpu_utilization():
try:
nvidia_smi_output = subprocess.check_output(
[
"nvidia-smi",
"--query-gpu=utilization.gpu",
"--id=0",
"--format=csv,noheader,nounits",
]
)
gpu_utilization = nvidia_smi_output.decode().strip()
return gpu_utilization
except subprocess.CalledProcessError:
return "N/A"
gpu_utilizations = []
while self.poll_gpu:
gpu_utilization = get_gpu_utilization()
if gpu_utilization != "N/A":
gpu_utilizations.append(float(gpu_utilization))
with metrics_lock:
self.metrics_dict["gpu_util"] = torch.tensor(gpu_utilizations).mean().item()
def _send_requests(self):
"""
This function will send one warmup request, and then num_iters requests
to the backend process.
"""
fake_data = torch.randn(self.batch_size, 3, 250, 250, requires_grad=False)
other_data = [
torch.randn(self.batch_size, 3, 250, 250, requires_grad=False)
for i in range(self.num_iters)
]
# Send one batch of warmup data
self.request_queue.put((fake_data, time.time()))
# Tell backend to poll queue for warmup request
self.read_requests_event.set()
self.warmup_event.wait()
# Tell backend to poll queue for rest of requests
self.read_requests_event.set()
# Send fake data
self.start_send_time = time.time()
for i in range(self.num_iters):
self.request_queue.put((other_data[i], time.time()))
def run(self):
# Lock for writing to metrics_dict
metrics_lock = threading.Lock()
requests_thread = threading.Thread(target=self._send_requests)
metrics_thread = threading.Thread(
target=self._run_metrics, args=(metrics_lock,)
)
gpu_utilization_thread = threading.Thread(
target=self._run_gpu_utilization, args=(metrics_lock,)
)
requests_thread.start()
metrics_thread.start()
# only start polling GPU utilization after the warmup request is complete
self.warmup_event.wait()
gpu_utilization_thread.start()
requests_thread.join()
metrics_thread.join()
gpu_utilization_thread.join()
class BackendWorker:
"""
This worker will take tensors from the request queue, do some computation,
and then return the result back in the response queue.
"""
def __init__(
self,
metrics_dict,
request_queue,
response_queue,
read_requests_event,
batch_size,
num_workers,
model_dir=".",
compile_model=True,
):
super().__init__()
self.device = "cuda:0"
self.metrics_dict = metrics_dict
self.request_queue = request_queue
self.response_queue = response_queue
self.read_requests_event = read_requests_event
self.batch_size = batch_size
self.num_workers = num_workers
self.model_dir = model_dir
self.compile_model = compile_model
self._setup_complete = False
self.h2d_stream = torch.cuda.Stream()
self.d2h_stream = torch.cuda.Stream()
# maps thread_id to the cuda.Stream associated with that worker thread
self.stream_map = {}
def _setup(self):
import time
from torchvision.models.resnet import BasicBlock, ResNet
import torch
# Create ResNet18 on meta device
with torch.device("meta"):
m = ResNet(BasicBlock, [2, 2, 2, 2])
# Load pretrained weights
start_load_time = time.time()
state_dict = torch.load(
f"{self.model_dir}/resnet18-f37072fd.pth",
mmap=True,
map_location=self.device,
)
self.metrics_dict["torch_load_time"] = time.time() - start_load_time
m.load_state_dict(state_dict, assign=True)
m.eval()
if self.compile_model:
start_compile_time = time.time()
m.compile()
end_compile_time = time.time()
self.metrics_dict["m_compile_time"] = end_compile_time - start_compile_time
return m
def model_predict(
self,
model,
input_buffer,
copy_event,
compute_event,
copy_sem,
compute_sem,
response_list,
request_time,
):
# copy_sem makes sure copy_event has been recorded in the data copying thread
copy_sem.acquire()
self.stream_map[threading.get_native_id()].wait_event(copy_event)
with torch.cuda.stream(self.stream_map[threading.get_native_id()]):
with torch.no_grad():
response_list.append(model(input_buffer))
compute_event.record()
compute_sem.release()
del input_buffer
def copy_data(self, input_buffer, data, copy_event, copy_sem):
data = data.pin_memory()
with torch.cuda.stream(self.h2d_stream):
input_buffer.copy_(data, non_blocking=True)
copy_event.record()
copy_sem.release()
def respond(self, compute_event, compute_sem, response_list, request_time):
# compute_sem makes sure compute_event has been recorded in the model_predict thread
compute_sem.acquire()
self.d2h_stream.wait_event(compute_event)
with torch.cuda.stream(self.d2h_stream):
self.response_queue.put((response_list[0].cpu(), request_time))
async def run(self):
def worker_initializer():
self.stream_map[threading.get_native_id()] = torch.cuda.Stream()
worker_pool = ThreadPoolExecutor(
max_workers=self.num_workers, initializer=worker_initializer
)
h2d_pool = ThreadPoolExecutor(max_workers=1)
d2h_pool = ThreadPoolExecutor(max_workers=1)
self.read_requests_event.wait()
# Clear as we will wait for this event again before continuing to
# poll the request_queue for the non-warmup requests
self.read_requests_event.clear()
while True:
try:
data, request_time = self.request_queue.get(timeout=5)
except Empty:
break
if not self._setup_complete:
model = self._setup()
copy_sem = threading.Semaphore(0)
compute_sem = threading.Semaphore(0)
copy_event = torch.cuda.Event()
compute_event = torch.cuda.Event()
response_list = []
input_buffer = torch.empty(
[self.batch_size, 3, 250, 250], dtype=torch.float32, device="cuda"
)
asyncio.get_running_loop().run_in_executor(
h2d_pool,
self.copy_data,
input_buffer,
data,
copy_event,
copy_sem,
)
asyncio.get_running_loop().run_in_executor(
worker_pool,
self.model_predict,
model,
input_buffer,
copy_event,
compute_event,
copy_sem,
compute_sem,
response_list,
request_time,
)
asyncio.get_running_loop().run_in_executor(
d2h_pool,
self.respond,
compute_event,
compute_sem,
response_list,
request_time,
)
if not self._setup_complete:
self.read_requests_event.wait()
self._setup_complete = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_iters", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--model_dir", type=str, default=".")
parser.add_argument(
"--compile", default=True, action=argparse.BooleanOptionalAction
)
parser.add_argument("--output_file", type=str, default="output.csv")
parser.add_argument(
"--profile", default=False, action=argparse.BooleanOptionalAction
)
parser.add_argument("--num_workers", type=int, default=4)
args = parser.parse_args()
downloaded_checkpoint = False
if not os.path.isfile(f"{args.model_dir}/resnet18-f37072fd.pth"):
p = subprocess.run(
[
"wget",
"https://download.pytorch.org/models/resnet18-f37072fd.pth",
]
)
if p.returncode == 0:
downloaded_checkpoint = True
else:
raise RuntimeError("Failed to download checkpoint")
try:
mp.set_start_method("forkserver")
request_queue = mp.Queue()
response_queue = mp.Queue()
read_requests_event = mp.Event()
manager = mp.Manager()
metrics_dict = manager.dict()
metrics_dict["batch_size"] = args.batch_size
metrics_dict["compile"] = args.compile
frontend = FrontendWorker(
metrics_dict,
request_queue,
response_queue,
read_requests_event,
args.batch_size,
num_iters=args.num_iters,
)
backend = BackendWorker(
metrics_dict,
request_queue,
response_queue,
read_requests_event,
args.batch_size,
args.num_workers,
args.model_dir,
args.compile,
)
frontend.start()
if args.profile:
def trace_handler(prof):
prof.export_chrome_trace("trace.json")
with torch.profiler.profile(on_trace_ready=trace_handler) as prof:
asyncio.run(backend.run())
else:
asyncio.run(backend.run())
frontend.join()
metrics_dict = {k: [v] for k, v in metrics_dict._getvalue().items()}
output = pd.DataFrame.from_dict(metrics_dict, orient="columns")
output_file = "./results/" + args.output_file
is_empty = not os.path.isfile(output_file)
with open(output_file, "a+", newline="") as file:
output.to_csv(file, header=is_empty, index=False)
finally:
# Cleanup checkpoint file if we downloaded it
if downloaded_checkpoint:
os.remove(f"{args.model_dir}/resnet18-f37072fd.pth")
|