File: pt_backward_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (28 lines) | stat: -rw-r--r-- 818 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import operator_benchmark as op_bench

import torch


add_configs = op_bench.cross_product_configs(
    M=[8, 1], N=[8, 2], K=[8, 4], tags=["short"]
)


# This benchmark uses the auto_set to automatically set requires_grad
# for both inputs. The test name can also be used for filtering.
class AddBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K):
        self.input_one = torch.rand(M, N, K, requires_grad=self.auto_set())
        self.input_two = torch.rand(M, N, K, requires_grad=self.auto_set())
        self.set_module_name("add")

    def forward(self):
        return torch.add(self.input_one, self.input_two)


op_bench.generate_pt_test(add_configs, AddBenchmark)
op_bench.generate_pt_gradient_test(add_configs, AddBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()