1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
import operator_benchmark as op_bench
import torch
configs = op_bench.random_sample_configs(
M=[1, 2, 3, 4, 5, 6],
N=[7, 8, 9, 10, 11, 12],
K=[13, 14, 15, 16, 17, 18],
# probs saves the weights of each value
probs=op_bench.attr_probs(
M=[0.5, 0.2, 0.1, 0.05, 0.03, 0.1],
N=[0.1, 0.3, 0.4, 0.02, 0.03, 0.04],
K=[0.03, 0.6, 0.04, 0.02, 0.03, 0.01],
),
# this is the number of returned inputs
total_samples=10,
tags=["short"],
)
class AddBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K):
self.input_one = torch.rand(M, N, K)
self.input_two = torch.rand(M, N, K)
self.set_module_name("add")
def forward(self):
return torch.add(self.input_one, self.input_two)
op_bench.generate_pt_test(configs, AddBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|