File: add_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (151 lines) | stat: -rw-r--r-- 4,326 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import operator_benchmark as op_bench

import torch


"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""

# Configs for PT add operator
add_long_configs = op_bench.cross_product_configs(
    M=[8, 128], N=[32, 64], K=[256, 512], device=["cpu", "cuda"], tags=["long"]
)


add_short_configs = op_bench.config_list(
    attr_names=["M", "N", "K"],
    attrs=[
        [1, 1, 1],
        [64, 64, 64],
        [64, 64, 128],
    ],
    cross_product_configs={
        "device": ["cpu", "cuda"],
    },
    tags=["short"],
)


class AddBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, device):
        self.inputs = {
            "input_one": torch.rand(
                M, N, K, device=device, requires_grad=self.auto_set()
            ),
            "input_two": torch.rand(
                M, N, K, device=device, requires_grad=self.auto_set()
            ),
        }
        self.set_module_name("add")

    def forward(self, input_one, input_two):
        return torch.add(input_one, input_two)


# The generated test names based on add_short_configs will be in the following pattern:
# add_M8_N16_K32_devicecpu
# add_M8_N16_K32_devicecpu_bwdall
# add_M8_N16_K32_devicecpu_bwd1
# add_M8_N16_K32_devicecpu_bwd2
# ...
# Those names can be used to filter tests.

op_bench.generate_pt_test(add_long_configs + add_short_configs, AddBenchmark)
op_bench.generate_pt_gradient_test(add_long_configs + add_short_configs, AddBenchmark)


"""Mircobenchmark for addmm operator."""


class AddmmBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, device):
        self.inputs = {
            "input_one": torch.rand(M, K, device=device, requires_grad=self.auto_set()),
            "mat1": torch.rand(M, N, device=device, requires_grad=self.auto_set()),
            "mat2": torch.rand(N, K, device=device, requires_grad=self.auto_set()),
        }
        self.set_module_name("addmm")

    def forward(self, input_one, mat1, mat2):
        return torch.addmm(input_one, mat1, mat2)


op_bench.generate_pt_test(add_long_configs + add_short_configs, AddmmBenchmark)
op_bench.generate_pt_gradient_test(add_long_configs + add_short_configs, AddmmBenchmark)


"""Mircobenchmark for addr operator."""


class AddrBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, device, dtype):
        self.inputs = {
            "input_one": torch.rand(
                (M, N), device=device, requires_grad=self.auto_set(), dtype=dtype
            ),
            "vec1": torch.rand(
                (M,), device=device, requires_grad=self.auto_set(), dtype=dtype
            ),
            "vec2": torch.rand(
                (N,), device=device, requires_grad=self.auto_set(), dtype=dtype
            ),
        }
        self.set_module_name("addr")

    def forward(self, input_one, vec1, vec2):
        return torch.addr(input_one, vec1, vec2)


addr_configs = op_bench.cross_product_configs(
    M=[8, 256],
    N=[256, 16],
    device=["cpu", "cuda"],
    dtype=[torch.double, torch.half],
    tags=["addr"],
)

op_bench.generate_pt_test(addr_configs, AddrBenchmark)
op_bench.generate_pt_gradient_test(addr_configs, AddrBenchmark)


"""Mircobenchmark for addbmm operator."""


class AddbmmBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, B, M, N, K, device):
        self.inputs = {
            "input_one": torch.rand(
                (M, N), device=device, requires_grad=self.auto_set()
            ),
            "batch1": torch.rand(
                (B, M, K), device=device, requires_grad=self.auto_set()
            ),
            "batch2": torch.rand(
                (
                    B,
                    K,
                    N,
                ),
                device=device,
                requires_grad=self.auto_set(),
            ),
        }
        self.set_module_name("addbmm")

    def forward(self, input_one, batch1, batch2):
        return torch.addbmm(input_one, batch1, batch2)


addbmm_configs = op_bench.cross_product_configs(
    B=[2, 100],
    M=[8, 256],
    N=[256, 16],
    K=[15, 16],
    device=["cpu", "cuda"],
    tags=["addbmm"],
)

op_bench.generate_pt_test(addbmm_configs, AddbmmBenchmark)
op_bench.generate_pt_gradient_test(addbmm_configs, AddbmmBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()