1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
class BmmBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, K, device, op):
self.inputs = {
"batch1": torch.rand(
(B, M, K), device=device, requires_grad=self.auto_set()
),
"batch2": torch.rand(
(
B,
K,
N,
),
device=device,
requires_grad=self.auto_set(),
),
}
self.set_module_name(f"bmm (actual op={op}")
self.op = torch.bmm if op == "bmm" else torch.matmul
def forward(self, batch1, batch2):
return self.op(batch1, batch2)
bmm_configs = op_bench.cross_product_configs(
B=[2, 100],
M=[8, 256],
N=[256, 16],
K=[16, 32],
device=["cpu"],
tags=["short"],
op=["bmm", "matmul"],
)
op_bench.generate_pt_test(bmm_configs, BmmBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|