File: cat_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (160 lines) | stat: -rw-r--r-- 4,457 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import random
from typing import List

import operator_benchmark as op_bench

import torch


"""Microbenchmarks for Cat operator"""

cross_product_configs = {
    "device": ["cpu", "cuda"],
}

# Configs for PT Cat operator
cat_configs_short = op_bench.config_list(
    attr_names=["sizes", "N", "dim"],
    attrs=[
        [(1, 1, 1), 2, 0],  # noqa: E241
        [(512, 512, 2), 2, 1],  # noqa: E241
        [(128, 1024, 2), 2, 1],  # noqa: E241
    ],
    cross_product_configs=cross_product_configs,
    tags=["short"],
)

# Configs specific to static runtime feature - a fast path runtime for pared down models
cat_configs_static_runtime = op_bench.config_list(
    attr_names=["sizes", "N", "dim"],
    attrs=[
        [[(1, 160), (1, 14)], -1, 1],
        [[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1],
        [[(1, 580), (1, 174)], -1, 1],
        [[(20, 160), (20, 14)], -1, 1],
        [[(20, 20, 40), (20, 4, 40), (20, 5, 40)], -1, 1],
        [[(20, 580), (20, 174)], -1, 1],
    ],
    cross_product_configs=cross_product_configs,
    tags=["static_runtime"],
)

cat_configs_long = op_bench.config_list(
    attr_names=["sizes", "N", "dim"],
    attrs=[
        [(2**10, 2**10, 2), 2, 0],  # noqa: E241
        [(2**10 + 1, 2**10 - 1, 2), 2, 1],  # noqa: E226,E241
        [(2**10, 2**10, 2), 2, 2],  # noqa: E241
        [
            [
                lambda: random.randint(2**6, 2**7),
                2**7 - 17,
                2**6 + 1,
            ],  # noqa: E201,E226,E241
            5,
            0,
        ],
        [
            [
                2**6 + 2**5,
                lambda: random.randint(2**6, 2**7),
                2**6,
            ],  # noqa: E201,E226,E241,E272
            5,
            1,
        ],
        [
            [
                2**7,
                2**6,
                lambda: random.randint(2**6, 2**7),
            ],  # noqa: E201,E241,E272
            5,
            2,
        ],
        [[lambda: random.randint(2**5, 2**6), 2**5, 2**6], 50, 0],  # noqa: E241
        [
            [2**5, lambda: random.randint(2**5, 2**6), 2**6],  # noqa: E241,E272
            50,
            1,
        ],
        [
            [
                2**5 + 1,
                2**6 + 1,
                lambda: random.randint(2**5, 2**6),
            ],  # noqa: E226,E241,E272
            50,
            2,
        ],
    ],
    cross_product_configs=cross_product_configs,
    tags=["long"],
)

# There is a different codepath on CUDA for >4 dimensions
cat_configs_multidim = op_bench.config_list(
    attr_names=["sizes", "N", "dim"],
    attrs=[
        [(2**6, 2**5, 2**2, 2**4, 2**5), 2, 2],  # noqa: E241
        [(2**4, 2**5, 2**2, 2**4, 2**5), 8, 2],  # noqa: E241
        [
            (2**3 + 1, 2**5 - 1, 2**2 + 1, 2**4 - 1, 2**5 + 1),
            17,
            4,
        ],  # noqa: E226,E241
    ],
    cross_product_configs=cross_product_configs,
    tags=["multidim"],
)

cat_configs_manyinputs = op_bench.config_list(
    attr_names=["sizes", "N", "dim"],
    attrs=[
        [[lambda: random.randint(1, 10000)], 100, 0],
        [[lambda: random.randint(1, 1000)], 1000, 0],
        [[lambda: random.randint(1, 500)], 2000, 0],
        [[lambda: random.randint(1, 300)], 3000, 0],
    ],
    cross_product_configs=cross_product_configs,
    tags=["manyinputs"],
)


class CatBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, sizes, N, dim, device):
        random.seed(42)
        inputs = []
        gen_sizes = []
        if type(sizes) == list and N == -1:
            gen_sizes = sizes
        else:
            for i in range(N):
                gen_sizes.append(
                    [
                        old_size() if callable(old_size) else old_size
                        for old_size in sizes
                    ]
                )

        for s in gen_sizes:
            inputs.append(torch.rand(s, device=device))
        result = torch.empty(0, device=device)
        self.inputs = {"result": result, "inputs": inputs, "dim": dim}
        self.set_module_name("cat")

    def forward(self, result: torch.Tensor, inputs: List[torch.Tensor], dim: int):
        return torch.cat(inputs, dim=dim, out=result)


op_bench.generate_pt_test(
    cat_configs_short
    + cat_configs_long
    + cat_configs_multidim
    + cat_configs_manyinputs
    + cat_configs_static_runtime,
    CatBenchmark,
)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()