1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
from pt import configs
import operator_benchmark as op_bench
import torch
import torch.nn as nn
"""
Microbenchmarks for Conv1d and ConvTranspose1d operators.
"""
class Conv1dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, L, device):
self.inputs = {
"input": torch.rand(N, IC, L, device=device, requires_grad=self.auto_set())
}
self.conv1d = nn.Conv1d(IC, OC, kernel, stride=stride).to(device=device)
self.set_module_name("Conv1d")
def forward(self, input):
return self.conv1d(input)
class ConvTranspose1dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, L, device):
self.inputs = {"input": torch.rand(N, IC, L, device=device)}
self.convtranspose1d = nn.ConvTranspose1d(IC, OC, kernel, stride=stride).to(
device=device
)
self.set_module_name("ConvTranspose1d")
def forward(self, input):
return self.convtranspose1d(input)
op_bench.generate_pt_test(
configs.conv_1d_configs_short + configs.conv_1d_configs_long, Conv1dBenchmark
)
op_bench.generate_pt_test(
configs.convtranspose_1d_configs_short
+ configs.conv_1d_configs_short
+ configs.conv_1d_configs_long,
ConvTranspose1dBenchmark,
)
"""
Microbenchmarks for Conv2d, ConvTranspose2d, and Conv2dPointwise operators.
"""
class Conv2dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
self.conv2d = nn.Conv2d(
IC, OC, kernel, stride=stride, groups=G, padding=pad
).to(device=device)
self.set_module_name("Conv2d")
def forward(self, input):
return self.conv2d(input)
class ConvTranspose2dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
self.convtranspose2d = nn.ConvTranspose2d(
IC, OC, kernel, stride=stride, groups=G, padding=pad
).to(device=device)
self.set_module_name("ConvTranspose2d")
def forward(self, input):
return self.convtranspose2d(input)
class Conv2dPointwiseBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, stride, N, H, W, G, pad, device):
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
# Use 1 as kernel for pointwise convolution
self.conv2d = nn.Conv2d(IC, OC, 1, stride=stride, groups=G, padding=pad).to(
device=device
)
self.set_module_name("Conv2dPointwise")
def forward(self, input):
return self.conv2d(input)
op_bench.generate_pt_test(
configs.conv_2d_configs_short + configs.conv_2d_configs_long, Conv2dBenchmark
)
op_bench.generate_pt_test(
configs.conv_2d_configs_short + configs.conv_2d_configs_long,
ConvTranspose2dBenchmark,
)
op_bench.generate_pt_test(
configs.conv_2d_pw_configs_short + configs.conv_2d_pw_configs_long,
Conv2dPointwiseBenchmark,
)
"""
Microbenchmarks for Conv3d and ConvTranspose3d operators.
"""
class Conv3dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, D, H, W, device):
self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
self.conv3d = nn.Conv3d(IC, OC, kernel, stride=stride).to(device=device)
self.set_module_name("Conv3d")
def forward(self, input):
return self.conv3d(input)
class ConvTranspose3dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, IC, OC, kernel, stride, N, D, H, W, device):
self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
self.convtranspose3d = nn.ConvTranspose3d(IC, OC, kernel, stride=stride).to(
device=device
)
self.set_module_name("ConvTranspose3d")
def forward(self, input):
return self.convtranspose3d(input)
op_bench.generate_pt_test(configs.conv_3d_configs_short, Conv3dBenchmark)
op_bench.generate_pt_test(configs.conv_3d_configs_short, ConvTranspose3dBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|