File: conv_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (136 lines) | stat: -rw-r--r-- 4,253 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from pt import configs

import operator_benchmark as op_bench

import torch
import torch.nn as nn


"""
Microbenchmarks for Conv1d and ConvTranspose1d operators.
"""


class Conv1dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, L, device):
        self.inputs = {
            "input": torch.rand(N, IC, L, device=device, requires_grad=self.auto_set())
        }
        self.conv1d = nn.Conv1d(IC, OC, kernel, stride=stride).to(device=device)
        self.set_module_name("Conv1d")

    def forward(self, input):
        return self.conv1d(input)


class ConvTranspose1dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, L, device):
        self.inputs = {"input": torch.rand(N, IC, L, device=device)}
        self.convtranspose1d = nn.ConvTranspose1d(IC, OC, kernel, stride=stride).to(
            device=device
        )
        self.set_module_name("ConvTranspose1d")

    def forward(self, input):
        return self.convtranspose1d(input)


op_bench.generate_pt_test(
    configs.conv_1d_configs_short + configs.conv_1d_configs_long, Conv1dBenchmark
)
op_bench.generate_pt_test(
    configs.convtranspose_1d_configs_short
    + configs.conv_1d_configs_short
    + configs.conv_1d_configs_long,
    ConvTranspose1dBenchmark,
)


"""
Microbenchmarks for Conv2d, ConvTranspose2d, and Conv2dPointwise operators.
"""


class Conv2dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
        self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
        self.conv2d = nn.Conv2d(
            IC, OC, kernel, stride=stride, groups=G, padding=pad
        ).to(device=device)
        self.set_module_name("Conv2d")

    def forward(self, input):
        return self.conv2d(input)


class ConvTranspose2dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
        self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
        self.convtranspose2d = nn.ConvTranspose2d(
            IC, OC, kernel, stride=stride, groups=G, padding=pad
        ).to(device=device)
        self.set_module_name("ConvTranspose2d")

    def forward(self, input):
        return self.convtranspose2d(input)


class Conv2dPointwiseBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, stride, N, H, W, G, pad, device):
        self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
        # Use 1 as kernel for pointwise convolution
        self.conv2d = nn.Conv2d(IC, OC, 1, stride=stride, groups=G, padding=pad).to(
            device=device
        )
        self.set_module_name("Conv2dPointwise")

    def forward(self, input):
        return self.conv2d(input)


op_bench.generate_pt_test(
    configs.conv_2d_configs_short + configs.conv_2d_configs_long, Conv2dBenchmark
)
op_bench.generate_pt_test(
    configs.conv_2d_configs_short + configs.conv_2d_configs_long,
    ConvTranspose2dBenchmark,
)
op_bench.generate_pt_test(
    configs.conv_2d_pw_configs_short + configs.conv_2d_pw_configs_long,
    Conv2dPointwiseBenchmark,
)


"""
Microbenchmarks for Conv3d and ConvTranspose3d operators.
"""


class Conv3dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, D, H, W, device):
        self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
        self.conv3d = nn.Conv3d(IC, OC, kernel, stride=stride).to(device=device)
        self.set_module_name("Conv3d")

    def forward(self, input):
        return self.conv3d(input)


class ConvTranspose3dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, IC, OC, kernel, stride, N, D, H, W, device):
        self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
        self.convtranspose3d = nn.ConvTranspose3d(IC, OC, kernel, stride=stride).to(
            device=device
        )
        self.set_module_name("ConvTranspose3d")

    def forward(self, input):
        return self.convtranspose3d(input)


op_bench.generate_pt_test(configs.conv_3d_configs_short, Conv3dBenchmark)
op_bench.generate_pt_test(configs.conv_3d_configs_short, ConvTranspose3dBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()