File: embeddingbag_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (74 lines) | stat: -rw-r--r-- 2,189 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy
from pt import configs

import operator_benchmark as op_bench

import torch


"""Embedding and EmbeddingBag Operator Benchmark"""


class EmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
    def init(
        self,
        embeddingbags,
        dim,
        mode,
        input_size,
        offset,
        sparse,
        include_last_offset,
        device,
    ):
        self.embedding = torch.nn.EmbeddingBag(
            num_embeddings=embeddingbags,
            embedding_dim=dim,
            mode=mode,
            include_last_offset=include_last_offset,
            sparse=sparse,
        ).to(device=device)
        numpy.random.seed((1 << 32) - 1)
        offsets = torch.LongTensor([offset], device=device)
        input = torch.tensor(
            numpy.random.randint(0, embeddingbags, input_size), device=device
        ).long()
        self.inputs = {
            "input": input,
            "offset": torch.cat(
                (offsets, torch.tensor([input.size(0)], dtype=torch.long)), 0
            ),
        }
        self.set_module_name("embeddingbag")

    def forward(self, input, offset):
        return self.embedding(input, offset)


op_bench.generate_pt_test(configs.embeddingbag_short_configs, EmbeddingBagBenchmark)
op_bench.generate_pt_gradient_test(
    configs.embeddingbag_short_configs, EmbeddingBagBenchmark
)


class EmbeddingBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, num_embeddings, embedding_dim, input_size, device):
        self.embedding = torch.nn.Embedding(
            num_embeddings=num_embeddings, embedding_dim=embedding_dim
        ).to(device=device)
        numpy.random.seed((1 << 32) - 1)
        input = torch.tensor(
            numpy.random.randint(0, num_embeddings, input_size), device=device
        ).long()
        self.inputs = {"input": input}
        self.set_module_name("embedding")

    def forward(self, input):
        return self.embedding(input)


op_bench.generate_pt_test(configs.embedding_short_configs, EmbeddingBenchmark)
op_bench.generate_pt_gradient_test(configs.embedding_short_configs, EmbeddingBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()