File: matmul_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (54 lines) | stat: -rw-r--r-- 1,334 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import operator_benchmark as op_bench

import torch


"""Microbenchmarks for MatMul operator"""

# Configs for PT Matmul operator
mm_short_configs = op_bench.config_list(
    attr_names=["M", "N", "K", "trans_a", "trans_b"],
    attrs=[
        [1, 1, 1, True, False],
        [128, 128, 128, True, False],
        [256, 256, 256, False, True],
    ],
    cross_product_configs={
        "device": ["cpu", "cuda"],
    },
    tags=["short"],
)


mm_long_configs = op_bench.cross_product_configs(
    M=[32],
    N=[512, 128],
    K=[64],
    trans_a=[False, True],
    trans_b=[True, False],
    device=["cpu", "cuda"],
    tags=["long"],
)


class MatMulBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, trans_a, trans_b, device):
        self.inputs = {
            "input_one": torch.rand(M, N, device=device)
            if trans_a
            else torch.rand(N, M, device=device).t(),
            "input_two": torch.rand(N, K, device=device)
            if trans_b
            else torch.rand(K, N, device=device).t(),
        }
        self.set_module_name("matmul")

    def forward(self, input_one, input_two):
        return torch.matmul(input_one, input_two)


op_bench.generate_pt_test(mm_long_configs + mm_short_configs, MatMulBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()