File: qinterpolate_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (67 lines) | stat: -rw-r--r-- 2,107 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import operator_benchmark as op_bench

import torch


"""Microbenchmarks for the quantized interpolate op.

Note: We are not benchmarking `upsample` as it is being deprecated, and calls
the `interpolate` anyway.
"""

qinterpolate_long_configs = op_bench.config_list(
    attr_names=["M", "N", "K"],
    attrs=[
        [512, 512, 512],
    ],
    cross_product_configs={
        "dtype": [torch.quint8, torch.qint8, torch.qint32],
        "mode": ["nearest", "bilinear"],
        "scale": [0.5, 1.0, 2.0],
        "contig": [True],  # TODO: Add `False` after #29435
    },
    tags=["long"],
)


qinterpolate_short_configs = op_bench.config_list(
    attr_names=["M", "N", "K", "dtype", "mode", "scale", "contig"],
    attrs=[
        [32, 32, 32, torch.quint8, "nearest", 0.5, True],  # Downsample
        [32, 32, 32, torch.quint8, "bilinear", 0.5, True],  # Downsample
        [32, 32, 32, torch.quint8, "nearest", 2.0, True],  # Upsample
        [32, 32, 32, torch.quint8, "bilinear", 2.0, True],  # Upsample
        [3, 720, 1280, torch.quint8, "bilinear", 0.83333, True],  # Downsample
    ],
    tags=["short"],
)


class QInterpolateBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, dtype, mode, scale, contig):
        f_input = (torch.rand(1, M, N, K) - 0.5) * 256
        scale = 0.1
        zero_point = 42
        self.q_input = torch.quantize_per_tensor(
            f_input, scale=scale, zero_point=zero_point, dtype=dtype
        )
        if not contig:
            permute_dims = list(range(self.q_input.ndim))[::-1]
            self.q_input = self.q_input.permute(permute_dims)

        self.inputs = {"q_input": self.q_input, "scale_factor": scale, "mode": mode}
        self.set_module_name("q_interpolate")

    def forward(self, q_input, scale_factor: float, mode: str):
        return torch.nn.functional.interpolate(
            q_input, scale_factor=scale_factor, mode=mode
        )


op_bench.generate_pt_test(
    qinterpolate_short_configs + qinterpolate_long_configs, QInterpolateBenchmark
)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()