File: qrnn_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (74 lines) | stat: -rw-r--r-- 1,934 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import operator_benchmark as op_bench

import torch
from torch import nn


"""
Microbenchmarks for RNNs.
"""

qrnn_configs = op_bench.config_list(
    attrs=[
        [1, 3, 1],
        [5, 7, 4],
    ],
    # names: input_size, hidden_size, num_layers
    attr_names=["I", "H", "NL"],
    cross_product_configs={
        "B": (True,),  # Bias always True for quantized
        "D": (False, True),  # Bidirectional
        "dtype": (torch.qint8,),  # Only qint8 dtype works for now
    },
    tags=["short"],
)


class LSTMBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, I, H, NL, B, D, dtype):
        sequence_len = 128
        batch_size = 16

        # The quantized.dynamic.LSTM has a bug. That's why we create a regular
        # LSTM, and quantize it later. See issue #31192.
        cell_nn = nn.LSTM(
            input_size=I,
            hidden_size=H,
            num_layers=NL,
            bias=B,
            batch_first=False,
            dropout=0.0,
            bidirectional=D,
        )
        cell_temp = nn.Sequential(cell_nn)
        self.cell = torch.ao.quantization.quantize_dynamic(
            cell_temp, {nn.LSTM, nn.Linear}, dtype=dtype
        )[0]

        x = torch.randn(
            sequence_len,  # sequence length
            batch_size,  # batch size
            I,  # Number of features in X
        )
        h = torch.randn(
            NL * (D + 1),  # layer_num * dir_num
            batch_size,  # batch size
            H,  # hidden size
        )
        c = torch.randn(
            NL * (D + 1),  # layer_num * dir_num
            batch_size,  # batch size
            H,  # hidden size
        )

        self.inputs = {"x": x, "h": h, "c": c}
        self.set_module_name("QLSTM")

    def forward(self, x, h, c):
        return self.cell(x, (h, c))[0]


op_bench.generate_pt_test(qrnn_configs, LSTMBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()