File: qtensor_method_test.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (55 lines) | stat: -rw-r--r-- 1,360 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import operator_benchmark as op_bench

import torch


# Configs for pointwise and reduction unary ops
qmethods_configs_short = op_bench.config_list(
    attr_names=["M", "N"],
    attrs=[
        [32, 32],
    ],
    cross_product_configs={
        "dtype": [torch.quint8],
        "contig": [False, True],
    },
    tags=["short"],
)

qmethods_configs_long = op_bench.cross_product_configs(
    M=[256, 1024],
    N=[256, 1024],
    dtype=[torch.qint8, torch.qint32],
    contig=[False, True],
    tags=["long"],
)


class _QMethodBenchmarkBase(op_bench.TorchBenchmarkBase):
    def init(self, M, N, dtype, contig):
        f_input = torch.rand(M, N)
        scale = 1.0
        zero_point = 0
        self.q_input = torch.quantize_per_tensor(
            f_input, scale=scale, zero_point=zero_point, dtype=dtype
        )
        if not contig:
            permute_dims = list(range(self.q_input.ndim))[::-1]
            self.q_input = self.q_input.permute(permute_dims)

        self.inputs = {
            "q_input": self.q_input,
        }


class QMethodTensorInputCopyBenchmark(_QMethodBenchmarkBase):
    def forward(self, q_input):
        return q_input.copy_(q_input)


op_bench.generate_pt_test(
    qmethods_configs_short + qmethods_configs_long, QMethodTensorInputCopyBenchmark
)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()