1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
import random
from typing import List
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for Stack operator"""
# Configs for PT stack operator
stack_configs_static_runtime = op_bench.config_list(
attr_names=["sizes", "N"],
attrs=[
[(20, 40), 5],
[(1, 40), 5],
],
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(3))},
tags=["static_runtime"],
)
stack_configs_short = op_bench.config_list(
attr_names=["sizes", "N"],
attrs=[
[(1, 1, 1), 2], # noqa: E241
[(512, 512, 2), 2], # noqa: E241
[(128, 1024, 2), 2], # noqa: E241
],
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(4))},
tags=["short"],
)
stack_configs_long = op_bench.config_list(
attr_names=["sizes", "N"],
attrs=[
[(2**10, 2**10, 2), 2], # noqa: E241
[(2**10 + 1, 2**10 - 1, 2), 2], # noqa: E226,E241
[(2**10, 2**10, 2), 2], # noqa: E241
],
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(4))},
tags=["long"],
)
# There is a different codepath on CUDA for >4 dimensions
stack_configs_multidim = op_bench.config_list(
attr_names=["sizes", "N"],
attrs=[
[(2**6, 2**5, 2**2, 2**4, 2**5), 2], # noqa: E241
[(2**4, 2**5, 2**2, 2**4, 2**5), 8], # noqa: E241
[
(2**3 + 1, 2**5 - 1, 2**2 + 1, 2**4 - 1, 2**5 + 1),
17,
], # noqa: E226,E241
],
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(6))},
tags=["multidim"],
)
class StackBenchmark(op_bench.TorchBenchmarkBase):
def init(self, sizes, N, dim, device):
random.seed(42)
inputs = []
gen_sizes = []
if type(sizes) == list and N == -1:
gen_sizes = sizes
else:
for i in range(N):
gen_sizes.append(
[
old_size() if callable(old_size) else old_size
for old_size in sizes
]
)
for s in gen_sizes:
inputs.append(torch.rand(s, device=device))
result = torch.rand(gen_sizes[0], device=device)
self.inputs = {"result": result, "inputs": inputs, "dim": dim}
self.set_module_name("stack")
def forward(self, result: torch.Tensor, inputs: List[torch.Tensor], dim: int):
return torch.stack(inputs, dim=dim, out=result)
op_bench.generate_pt_test(
stack_configs_static_runtime
+ stack_configs_short
+ stack_configs_long
+ stack_configs_multidim,
StackBenchmark,
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|