File: common.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (34 lines) | stat: -rw-r--r-- 805 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch


NUM_REPEATS = 1000
NUM_REPEAT_OF_REPEATS = 1000


class SubTensor(torch.Tensor):
    pass


class WithTorchFunction:
    def __init__(self, data, requires_grad=False):
        if isinstance(data, torch.Tensor):
            self._tensor = data
            return

        self._tensor = torch.tensor(data, requires_grad=requires_grad)

    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        return WithTorchFunction(args[0]._tensor + args[1]._tensor)


class SubWithTorchFunction(torch.Tensor):
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        return super().__torch_function__(func, types, args, kwargs)