File: pyspybench.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (31 lines) | stat: -rw-r--r-- 778 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import argparse

from common import SubTensor, SubWithTorchFunction, WithTorchFunction  # noqa: F401

import torch


Tensor = torch.tensor

NUM_REPEATS = 1000000

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Run the torch.add for a given class a given number of times."
    )
    parser.add_argument(
        "tensor_class", metavar="TensorClass", type=str, help="The class to benchmark."
    )
    parser.add_argument(
        "--nreps", "-n", type=int, default=NUM_REPEATS, help="The number of repeats."
    )
    args = parser.parse_args()

    TensorClass = globals()[args.tensor_class]
    NUM_REPEATS = args.nreps

    t1 = TensorClass([1.0])
    t2 = TensorClass([2.0])

    for _ in range(NUM_REPEATS):
        torch.add(t1, t2)