File: nested_annotation_str.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (33 lines) | stat: -rw-r--r-- 884 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.utils.benchmark as benchmark


MEMO = {}


def create_nested_dict_type(layers):
    if layers == 0:
        return torch._C.StringType.get()
    if layers not in MEMO:
        less_nested = create_nested_dict_type(layers - 1)
        result = torch._C.DictType(
            torch._C.StringType.get(), torch._C.TupleType([less_nested, less_nested])
        )
        MEMO[layers] = result
    return MEMO[layers]


nesting_levels = (1, 3, 5, 10)
types = (reasonable, medium, big, huge) = [
    create_nested_dict_type(x) for x in nesting_levels
]

timers = [
    benchmark.Timer(stmt="x.annotation_str", globals={"x": nested_type})
    for nested_type in types
]

for nesting_level, typ, timer in zip(nesting_levels, types, timers):
    print("Nesting level:", nesting_level)
    print("output:", typ.annotation_str[:70])
    print(timer.blocked_autorange())