1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
# Sparse benchmarks
# This benchmark is for sparse matmul performance test.
# They exist for comparing the performance of sparse matrix routines
# `sparse @ vector`, `sparse @ sparse` and `sparse @ dense` with different backends (CPU/CUDA)
# and with other frameworks such as scipy.
import argparse
import os
import sys
from scipy.sparse import isspmatrix
import torch
import torch.utils.benchmark as benchmark_utils
from .utils import load_dlmc_dataset
def scipy_matmul(mat1, mat2):
if isspmatrix(mat1) and isspmatrix(mat2):
return mat1.dot(mat2).tocoo()
return mat1.dot(mat2)
def matmul_backward(a_dense, b_dense, grad_output):
r1 = a_dense.matmul(b_dense)
r1.backward(grad_output)
def sparse_matmul_backward(a, b, grad_output):
c = torch.sparse.mm(a, b)
c.backward(grad_output)
OPS_MAP = {
"sparse@sparse": "torch.sparse.mm",
"sparse@dense": "torch.matmul",
"sparse@vector": "torch.matmul",
}
# also get the arguments as input from the user using `argparse`
def parse_args():
parser = argparse.ArgumentParser(description="matmul benchmark")
parser.add_argument("--path", type=str, help="DLMC dataset path")
parser.add_argument("--dataset", type=str, default="magnitude_pruning")
parser.add_argument("--hidden-size", "--hidden_size", default=2048, type=int)
parser.add_argument("--backward-test", "--backward_test", action="store_true")
parser.add_argument(
"--operation",
type=str,
help="|".join(OPS_MAP.keys()),
default=next(iter(OPS_MAP)),
)
parser.add_argument("--with-cuda", "--with_cuda", action="store_true")
parser.add_argument(
"--timer-min-run-time", "--timer_min_run_time", default=1, type=float
)
return parser
def get_tasks(op, backward_test, device):
def filter_ops(operation):
if backward_test:
test_name = device + ":matmul-backward"
return [
(
test_name,
device,
"torch:" + operation.replace("sparse", "dense"),
"matmul_backward(dx, dy, grad_output)",
),
(
test_name,
device,
"torch:" + operation,
"sparse_matmul_backward(x, y, sparse_grad_output)",
),
]
else:
test_name = device + ":matmul-forward"
return list(
filter(
None,
[
(
test_name,
device,
"torch:" + operation.replace("sparse", "dense"),
f"{OPS_MAP[operation]}(dx, dy)",
),
(
test_name,
device,
"torch:" + operation,
f"{OPS_MAP[operation]}(x, y)",
),
(
test_name,
device,
"scipy:" + operation,
"scipy_matmul(sx, sy)",
)
if device == "cpu"
else None,
],
)
)
all_operations = {
"sparse@sparse": filter_ops("sparse@sparse"),
"sparse@dense": filter_ops("sparse@dense"),
"sparse@vector": filter_ops("sparse@vector"),
}
return all_operations[op]
if __name__ == "__main__":
parser = parse_args()
args = parser.parse_args()
if args.with_cuda and not torch.cuda.is_available():
raise RuntimeError("No CUDA available")
dataset_path = args.path
dataset_name = args.dataset
dataset_path = os.path.join(dataset_path, dataset_name)
device = "cuda" if args.with_cuda else "cpu"
tasks = get_tasks(args.operation, args.backward_test, device)
repeats = 3
timers = [
benchmark_utils.Timer(
stmt=stmt,
globals={
"scipy_matmul": scipy_matmul,
"matmul_backward": matmul_backward,
"sparse_matmul_backward": sparse_matmul_backward,
**variables,
},
label=label,
sub_label=sub_label,
description=f"{sparsity}",
env=device,
)
for sparsity in [0.5, 0.7, 0.8, 0.9, 0.95, 0.98]
for label, device, sub_label, stmt in tasks
for variables in load_dlmc_dataset(
dataset_path,
args.operation,
args.hidden_size,
sparsity,
device,
args.backward_test,
)
]
measurements = []
for i, timer in enumerate(timers * repeats):
m = timer.blocked_autorange(min_run_time=args.timer_min_run_time)
m.metadata = {"device": "cuda" if m.task_spec.env.find("cuda") >= 0 else "cpu"}
measurements.append(m)
print(f"\r{i + 1} / {len(timers) * repeats}", end="")
sys.stdout.flush()
print()
comparison = benchmark_utils.Compare(measurements)
print("== Results " + "=" * 80 + "\n" + "/" * 95 + "\n")
comparison.print()
|