File: test_csr.sh

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (41 lines) | stat: -rw-r--r-- 1,176 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
OUTFILE=spmm-no-mkl-test.txt
PYTORCH_HOME=$1

cd $PYTORCH_HOME

echo "" >> $OUTFILE
echo "----- USE_MKL=1 -----" >> $OUTFILE
rm -rf build

export USE_MKL=1
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py build --cmake-only
ccmake build  # or cmake-gui build

python setup.py install

cd benchmarks
echo "!! SPARSE SPMM TIME BENCHMARK!! " >> $OUTFILE
for dim0 in 1000 5000 10000; do
    for nnzr in 0.01 0.05 0.1 0.3; do
        python -m sparse.spmm --format csr --m $dim0 --n $dim0 --k $dim0 --nnz-ratio $nnzr --outfile $OUTFILE
        # python -m sparse.spmm --format coo --m $dim0 --n $dim0 --k $dim0 --nnz-ratio $nnzr --outfile $OUTFILE
    done
done
echo "----------------------" >> $OUTFILE

cd $PYTORCH_HOME
echo "----- USE_MKL=0 ------" >> $OUTFILE
rm -rf build

export USE_MKL=0
python setup.py install

cd benchmarks
for dim0 in 1000 5000 10000; do
    for nnzr in 0.01 0.05 0.1 0.3; do
        python -m sparse.spmv --format csr --m $dim0 --nnz-ratio $nnzr --outfile $OUTFILE
        python -m sparse.spmv --format coo --m $dim0 --nnz-ratio $nnzr --outfile $OUTFILE
    done
done
echo "----------------------" >> $OUTFILE