File: triton_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (436 lines) | stat: -rw-r--r-- 15,906 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import torch
from torch._inductor.runtime.benchmarking import benchmarker


def create_blocked_tensor(B, M, N, blocksize, sparsity, dtype, device):
    assert (
        sparsity <= 1.0 and sparsity >= 0.0
    ), "sparsity should be a value between 0 and 1"
    assert M % blocksize[0] == 0
    assert N % blocksize[1] == 0
    shape = (B, M // blocksize[0], N // blocksize[1])[int(B == 0) :]
    A = torch.bernoulli(torch.full(shape, 1 - sparsity, dtype=dtype, device=device))
    expected_nnz = int((1 - sparsity) * M * N / (blocksize[0] * blocksize[1]))
    nonzero_indices = A.flatten().nonzero()
    actual_nnz = nonzero_indices.shape[0]
    if actual_nnz > expected_nnz:
        selected_nonzeros = torch.randperm(actual_nnz)[: actual_nnz - expected_nnz]
        A.flatten()[nonzero_indices[selected_nonzeros]] = 0
    elif actual_nnz < expected_nnz:
        zero_indices = (A == 0).flatten().nonzero()
        selected_zeros = torch.randperm(zero_indices.shape[0])[
            : expected_nnz - actual_nnz
        ]
        A.flatten()[zero_indices[selected_zeros]] = 1
    A = torch.repeat_interleave(A, blocksize[0], dim=-2)
    A = torch.repeat_interleave(A, blocksize[1], dim=-1)
    return A


def _test_worker(test_func):
    ms, ms_min, ms_max = benchmarker.benchmark_gpu(test_func, warmup=500, rep=100)

    tflops = 2 * m * k * n * 1e-12 / (ms * 1e-3)
    return ms, tflops


def test_dense_dense_mm(x, y, **meta):
    def test_func(x=x.to_dense(), y=y):
        return torch.matmul(x, y)

    return _test_worker(test_func)


def test_torch_matmul(x, y, **meta):
    def test_func(x=x, y=y):
        return torch.matmul(x, y)

    return _test_worker(test_func)


def test_bsr_dense_mm(x, y, **meta):
    from torch.sparse._triton_ops import bsr_dense_mm

    def test_func(x=x, y=y):
        return bsr_dense_mm(
            x, y, meta=dict(GROUP_SIZE_ROW=4, num_stages=1, num_warps=4)
        )

    return _test_worker(test_func)


def test_bsr_dense_mm_with_meta(x, y, **meta):
    from torch.sparse._triton_ops import bsr_dense_mm

    def test_func(x=x, y=y, meta=meta):
        return bsr_dense_mm(x, y, meta=meta)

    return _test_worker(test_func)


def test_bsr_scatter_mm2(x, y, **meta):
    from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data

    indices_data = bsr_scatter_mm_indices_data(
        x, y, indices_format="scatter_mm", **meta
    )

    def test_func(x=x, y=y):
        return bsr_scatter_mm(x, y, indices_data=indices_data)

    return _test_worker(test_func)


def test_bsr_scatter_mm6(x, y, **meta):
    from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data

    indices_data = bsr_scatter_mm_indices_data(
        x, y, indices_format="bsr_strided_mm_compressed", **meta
    )

    def test_func(x=x, y=y):
        return bsr_scatter_mm(x, y, indices_data=indices_data)

    return _test_worker(test_func)


def test_bsr_scatter_mm(x, y, **meta):
    from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data

    def test_func(x=x, y=y):
        indices_data = bsr_scatter_mm_indices_data(
            x, y, indices_format="bsr_strided_mm_compressed", **meta
        )
        return bsr_scatter_mm(x, y, indices_data=indices_data)

    return _test_worker(test_func)


def test_linear(x, y, **meta):
    import torch.nn.functional as F

    def test_func(x=x, y=y.transpose(-2, -1)):
        return F.linear(y, x)

    return _test_worker(test_func)


if __name__ == "__main__":
    import argparse
    import atexit
    import itertools
    import sys

    import triton

    from torch.testing import make_tensor

    torch.manual_seed(0)

    def integer_list(a):
        return list(map(int, a.split(",")))

    def float_list(a):
        return list(map(float, a.split(",")))

    def integer_or_float_list(a):
        lst = []
        for n in a.split(","):
            if n.count(":") == 1:
                start, end = map(int, n.split(":"))
                lst.extend(range(start, end))
            elif n.count(":") == 2:
                start, end, step = map(int, n.split(":"))
                lst.extend(range(start, end, step))
            elif "." in n:
                lst.append(float(n))
            else:
                lst.append(int(n))
        return lst

    parser = argparse.ArgumentParser(description="SpTritonOps")

    parser.add_argument(
        "--ops",
        default="dense_dense_mm,bsr_dense_mm,bsr_scatter_mm6",
        type=str,
    )
    parser.add_argument("--b", default="0", type=int)

    parser.add_argument("--m", default="1024", type=integer_list)
    parser.add_argument("--k", default=None, type=integer_list)
    parser.add_argument("--n", default=None, type=integer_list)
    parser.add_argument("--bm", default="16", type=integer_list)
    parser.add_argument("--bk", default=None, type=integer_list)
    parser.add_argument("--tile_m", default=None, type=integer_list)
    parser.add_argument("--tile_n", default=None, type=integer_list)
    parser.add_argument("--split_n", default=None, type=integer_list)
    parser.add_argument("--group_size", default=None, type=integer_list)
    parser.add_argument("--num_warps", default=None, type=integer_list)
    parser.add_argument("--num_stages", default=None, type=integer_list)
    parser.add_argument("--sparsity", default="0.5", type=integer_or_float_list)
    parser.add_argument("--dtype", default="float16", type=str)
    parser.add_argument("--device", default="cuda", type=str)
    parser.add_argument("--repeat", default="1", type=int)
    parser.add_argument("--outfile", default="stdout", type=str)
    parser.add_argument("--star", default=False, action="store_true")

    args = parser.parse_args()

    if args.outfile == "stdout":
        outfile = sys.stdout
    elif args.outfile == "stderr":
        outfile = sys.stderr
    else:
        outfile = open(args.outfile, "a")

    ops = args.ops.split(",")

    b = args.b

    m_list = args.m or [1024]
    n_list = args.n or [None]
    k_list = args.k or [None]
    bm_list = args.bm or [16]
    bk_list = args.bk or [None]
    split_n_list = args.split_n or [None]
    tile_m_list = args.tile_m or [None]
    tile_n_list = args.tile_n or [None]
    group_size_list = args.group_size or [None]
    num_warps_list = args.num_warps or [None]
    num_stages_list = args.num_stages or [None]
    sparsity_list = args.sparsity or [0.5]
    dtype = getattr(torch, args.dtype)

    if args.star > 0:
        import torch.sparse._triton_ops

        assert {len(m_list), len(n_list), len(k_list), len(bm_list), len(bk_list)} == {
            1
        }
        m = m_list[0]
        n = n_list[0] or m
        k = k_list[0] or m
        bm = bm_list[0]
        bk = bk_list[0] or bm
        if "bsr_scatter_mm6" in ops:
            meta = torch.sparse._triton_ops.scatter_mm_meta(m, k, n, bm, bk)
        elif "bsr_dense_mm_with_meta" in ops:
            meta = torch.sparse._triton_ops.bsr_dense_mm_meta(m, k, n, bm, bk)
        else:
            raise NotImplementedError(f"--star not implemented for operations in {ops}")
        if "bsr_scatter_mm6" in ops:
            if split_n_list[0] is None:
                split_n_list = [
                    meta["SPLIT_N"] // 2,
                    meta["SPLIT_N"],
                    meta["SPLIT_N"] * 2,
                ][int(meta["SPLIT_N"] == 1) :]
            elif split_n_list[0] == 0:
                split_n_list = [meta["SPLIT_N"]]
            if tile_m_list[0] is None:
                tile_m_list = [meta["TILE_M"] // 2, meta["TILE_M"], meta["TILE_M"] * 2][
                    int(meta["TILE_M"] == 16) :
                ]
            elif tile_m_list[0] == 0:
                tile_m_list = [meta["TILE_M"]]
            if tile_n_list[0] is None:
                tile_n_list = [meta["TILE_N"] // 2, meta["TILE_N"], meta["TILE_N"] * 2][
                    int(meta["TILE_N"] == 16) :
                ]
            elif tile_n_list[0] == 0:
                tile_n_list = [meta["TILE_N"]]
            if group_size_list[0] is None:
                group_size_list = [
                    meta["GROUP_SIZE"] - 1,
                    meta["GROUP_SIZE"],
                    meta["GROUP_SIZE"] + 1,
                ][int(meta["GROUP_SIZE"] == 1) :]
            elif group_size_list[0] == 0:
                group_size_list = [meta["GROUP_SIZE"]]
        if "bsr_dense_mm_with_meta" in ops:
            if group_size_list[0] is None:
                group_size_list = [
                    meta["GROUP_SIZE_ROW"] - 1,
                    meta["GROUP_SIZE_ROW"],
                    meta["GROUP_SIZE_ROW"] + 1,
                ][int(meta["GROUP_SIZE_ROW"] == 1) :]
            elif group_size_list[0] == 0:
                group_size_list = [meta["GROUP_SIZE_ROW"]]
        if num_warps_list[0] is None:
            num_warps_list = [
                meta["num_warps"] // 2,
                meta["num_warps"],
                meta["num_warps"] * 2,
            ][int(meta["num_warps"] == 1) :]
        elif num_warps_list[0] == 0:
            num_warps_list = [meta["num_warps"]]
        if num_stages_list[0] is None:
            num_stages_list = [
                meta["num_stages"] - 1,
                meta["num_stages"],
                meta["num_stages"] + 1,
            ][int(meta["num_stages"] == 1) :]
        elif num_stages_list[0] == 0:
            num_stages_list = [meta["num_stages"]]

    device = args.device
    dense_dense_mm_sizes = set()
    target_performance = None
    performance_rtol = 1e-2

    best_messages = []

    @atexit.register
    def show_best_messages(best_messages=best_messages):
        print("TOP 10:")
        for m in best_messages[-10:]:
            print(m)
        sys.stdout.flush()

    for m, k, n, bm, bk, sparsity in itertools.product(
        m_list, k_list, n_list, bm_list, bk_list, sparsity_list
    ):
        k = k or m
        n = n or m
        bk = bk or bm

        if bm > m or bk > k:
            # Skip invalid parameter combinations
            continue

        blocksize = (bm, bk)

        if isinstance(sparsity, int):
            # integer sparsity value corresponds to desired nnz value
            sparsity = 1 - bk * bm * sparsity / (m * k)

        if sparsity > 1 or sparsity < 0:
            continue

        x = create_blocked_tensor(
            b, m, k, blocksize, sparsity, dtype, device
        ).to_sparse_bsr(blocksize)

        # recompute sparsity
        sparsity = 1 - bk * bm * x._nnz() / (m * k)

        y = make_tensor(k, n, dtype=dtype, device=device)

        bsr_size = f"{b}x{m}x{k}" if b > 0 else f"{k}x{n}"

        for op in ops:
            if op == "dense_dense_mm":
                if (m, k, n) in dense_dense_mm_sizes:
                    # Skip already benchmarked cases
                    continue
                dense_dense_mm_sizes.add((m, k, n))
            best_tflops = 0
            for (
                split_n,
                num_warps,
                num_stages,
                tile_m,
                tile_n,
                group_size,
            ) in itertools.product(
                split_n_list,
                num_warps_list,
                num_stages_list,
                tile_m_list,
                tile_n_list,
                group_size_list,
            ):
                if (
                    (tile_m or 0) > bm
                    or (tile_n or 0) > n // (split_n or 1)
                    or n % (split_n or 1) != 0
                    or (split_n or 0) > n
                ):
                    # Skip invalid parameter combinations
                    continue
                test_func = globals()["test_" + op]
                meta = dict(
                    bsr_scatter_mm6=dict(
                        SPLIT_N=split_n,
                        TILE_M=tile_m,
                        TILE_N=tile_n,
                        GROUP_SIZE=group_size,
                        num_stages=num_stages,
                        num_warps=num_warps,
                    ),
                    bsr_dense_mm_with_meta=dict(
                        GROUP_SIZE_ROW=group_size,
                        num_stages=num_stages,
                        num_warps=num_warps,
                    ),
                ).get(op, {})

                meta_str = ";".join(
                    f"{k}={v}" for k, v in meta.items() if v is not None
                )
                time_ms_lst = []
                performance_tflops_lst = []
                for r in range(args.repeat):
                    try:
                        time_ms, performance_tflops = test_func(x, y, **meta)
                    except triton.compiler.OutOfResources:
                        print(
                            f"op={op}[{meta_str}]({bsr_size},{k}x{n}) dtype={args.dtype} {sparsity=}(nnz={x._nnz()})"
                            f" blocksize={bm}x{bk} OutOfResources",
                            file=outfile,
                        )
                        continue
                    except AssertionError:
                        raise
                    except Exception as msg:
                        msg = str(msg).split("\n", 1)[0]
                        print(
                            f"op={op}[{meta_str}]({bsr_size},{k}x{n}) dtype={args.dtype} {sparsity=}(nnz={x._nnz()})"
                            f" blocksize={bm}x{bk} {msg}",
                            file=outfile,
                        )
                        continue
                    time_ms_lst.append(time_ms)
                    performance_tflops_lst.append(performance_tflops)
                    mark = ""
                    if op == "dense_dense_mm":
                        if target_performance is None:
                            target_performance = performance_tflops
                    elif target_performance is not None:
                        if (
                            abs(1 - performance_tflops / target_performance)
                            < performance_rtol
                        ):
                            mark += " @@@"
                    if best_tflops < performance_tflops:
                        best_tflops = performance_tflops
                        best_message = (
                            f"op={op}[{meta_str}]({bsr_size},x{n}) dtype={args.dtype} {sparsity=:.4f}(nnz={x._nnz()})"
                            f" blocksize={bm}x{bk} time={time_ms:.3f} ms performance={performance_tflops:.3f} TFLOPS"
                        )
                        if best_message not in best_messages:
                            best_messages.append(best_message)
                        mark += " !!!"
                    print(
                        f"op={op}[{meta_str}]({bsr_size},x{n}) dtype={args.dtype} {sparsity=:.4f}(nnz={x._nnz()})"
                        f" blocksize={bm}x{bk}"
                        f" time={time_ms:.3f} ms performance={performance_tflops:.3f} TFLOPS{mark}",
                        file=outfile,
                    )
                    outfile.flush()
                if args.repeat > 1:
                    avg_time_ms = sum(time_ms_lst) / len(time_ms_lst)
                    avg_performance_tflops = sum(performance_tflops_lst) / len(
                        performance_tflops_lst
                    )
                    print(
                        f"op={op}[{meta_str}]({bsr_size},{k}x{n}) dtype={args.dtype} {sparsity=}(nnz={x._nnz()})"
                        f" blocksize={bm}x{bk}"
                        f" time={time_ms:.3f} ms performance={performance_tflops:.3f} TFLOPS [AVERAGE]",
                        file=outfile,
                    )
                    outfile.flush()
                if op not in {"bsr_scatter_mm6", "bsr_dense_mm_with_meta"}:
                    # Break on operations that do not consume parameters
                    break