File: attention_bias_benchmarks.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (249 lines) | stat: -rw-r--r-- 7,561 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import itertools
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, List, Union

import numpy as np
from tabulate import tabulate
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.benchmark as benchmark
from torch.nn.attention.bias import CausalBias, CausalVariant
from torch.nn.parameter import Parameter


def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) -> float:
    # warmup
    for _ in range(5):
        func(*args, **kwargs)
    t0 = benchmark.Timer(
        stmt="func(*args, **kwargs)",
        globals={"args": args, "kwargs": kwargs, "func": func},
    )
    return t0.adaptive_autorange(min_run_time=0.1).median * 1e6


@dataclass(frozen=True)
class ExperimentConfig:
    batch_size: int
    num_heads: int
    q_seq_len: int
    k_seq_len: int
    embed_dim: int
    dtype: torch.dtype

    @property
    def head_dim(self) -> int:
        return self.embed_dim // self.num_heads

    def asdict(self):
        dict_obj = asdict(self)
        dict_obj["head_dim"] = self.head_dim
        return dict_obj


@dataclass(frozen=True)
class ExperimentResults:
    materialized_mask_time: float
    attn_mask_subclass_time: float

    def get_entries(self) -> List:
        return [
            f"{self.materialized_mask_time:2f}",
            f"{self.attn_mask_subclass_time:2f}",
        ]


@dataclass(frozen=True)
class Experiment:
    config: ExperimentConfig
    results: ExperimentResults

    def get_entries(self) -> List:
        return self.config.get_entries() + self.results.get_entries()


def generate_inputs(
    batch_size, q_sequence_length, kv_sequence_length, embed_dim, dtype, device
):
    q_shape = (batch_size, q_sequence_length, embed_dim)
    kv_shape = (batch_size, kv_sequence_length, embed_dim)

    make_q = partial(torch.rand, q_shape, device=device, dtype=dtype)
    make_kv = partial(torch.rand, kv_shape, device=device, dtype=dtype)
    return make_q(), make_kv(), make_kv()


class CompositeMHA(torch.nn.Module):
    def __init__(self, num_heads, embed_dim, device=None, dtype=None):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.head_dim = embed_dim // num_heads
        self.embed_dim = embed_dim
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"

        self.q_proj_weight = Parameter(
            torch.empty((embed_dim, embed_dim), **factory_kwargs)
        )
        self.k_proj_weight = Parameter(
            torch.empty((embed_dim, embed_dim), **factory_kwargs)
        )
        self.v_proj_weight = Parameter(
            torch.empty((embed_dim, embed_dim), **factory_kwargs)
        )
        self.out_proj = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
        self.num_heads = num_heads

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: Union[torch.Tensor, CausalBias],
    ):
        query_projected = F.linear(query, self.q_proj_weight)
        key_projected = F.linear(key, self.k_proj_weight)
        value_projected = F.linear(value, self.v_proj_weight)

        query = query.view(
            query_projected.size(0), -1, self.num_heads, self.head_dim
        ).transpose(1, 2)
        key = key.view(
            key_projected.size(0), -1, self.num_heads, self.head_dim
        ).transpose(1, 2)
        value = value.view(
            value_projected.size(0), -1, self.num_heads, self.head_dim
        ).transpose(1, 2)

        attn = torch.nn.functional.scaled_dot_product_attention(
            query,
            key,
            value,
            attn_mask=mask,
            dropout_p=0.0,
        )

        attn = attn.transpose(1, 2).reshape(query.size(0), -1, self.embed_dim)
        # Match return signature of nn.MHA
        return F.linear(attn, self.out_proj)

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.q_proj_weight)
        nn.init.xavier_uniform_(self.k_proj_weight)
        nn.init.xavier_uniform_(self.v_proj_weight)
        nn.init.constant_(self.out_proj, 0.0)


def run_single_experiment(config: ExperimentConfig) -> ExperimentResults:
    device = torch.device("cuda")
    composite_mha = CompositeMHA(
        config.num_heads, config.embed_dim, device, config.dtype
    )
    composite_mha.reset_parameters()
    query, key, value = generate_inputs(
        config.batch_size,
        config.q_seq_len,
        config.k_seq_len,
        config.embed_dim,
        config.dtype,
        device,
    )
    attn_mask = CausalBias(
        CausalVariant.LOWER_RIGHT, config.q_seq_len, config.k_seq_len
    )
    attn_mask_tensor = attn_mask._materialize(device)

    materialized_mask_time = benchmark_torch_function_in_microseconds(
        composite_mha, query, key, value, attn_mask_tensor
    )
    attn_mask_subclass_time = benchmark_torch_function_in_microseconds(
        composite_mha, query, key, value, attn_mask
    )
    torch.testing.assert_close(
        composite_mha(query, key, value, attn_mask_tensor),
        composite_mha(query, key, value, attn_mask),
    )

    return ExperimentResults(
        materialized_mask_time=materialized_mask_time,
        attn_mask_subclass_time=attn_mask_subclass_time,
    )


def generate_experiment_configs() -> List[ExperimentConfig]:
    batch_sizes = [1, 8, 16, 128]
    num_heads = [16, 32]
    q_kv_seq_lens = [(128, 256), (256, 416), (512, 4097), (1024, 2048), (1, 2048)]
    embed_dims = [2048, 4096]
    dtypes = [
        torch.bfloat16,
    ]
    all_configs = []
    for bsz, heads, (q_seq_len, kv_seq_len), embed_dim, dtype in itertools.product(
        batch_sizes, num_heads, q_kv_seq_lens, embed_dims, dtypes
    ):
        all_configs.append(
            ExperimentConfig(
                batch_size=bsz,
                num_heads=heads,
                q_seq_len=q_seq_len,
                k_seq_len=kv_seq_len,
                embed_dim=embed_dim,
                dtype=dtype,
            )
        )

    return all_configs


def calculate_speedup(results: ExperimentResults) -> float:
    return results.materialized_mask_time / results.attn_mask_subclass_time


def print_results(results: List[Experiment]):
    # Calculate speedups
    speedups = [calculate_speedup(r.results) for r in results]

    # Find indices of max and min speedups
    max_speedup_index = np.argmax(speedups)
    min_speedup_index = np.argmin(speedups)

    # Get the config dictionaries
    max_config_dict = results[max_speedup_index].config.asdict()
    min_config_dict = results[min_speedup_index].config.asdict()

    # Create table data
    table_data = [
        {
            "Type": "Average",
            "Speedup": np.mean(speedups),
            **dict.fromkeys(max_config_dict),
        },
        {"Type": "Max", "Speedup": speedups[max_speedup_index], **max_config_dict},
        {"Type": "Min", "Speedup": speedups[min_speedup_index], **min_config_dict},
    ]

    # Print table
    print(tabulate(table_data, headers="keys", tablefmt="pretty"))


def main():
    seed = 123
    np.random.seed(seed)
    torch.manual_seed(seed)
    results = []
    # Run one timing experiment comparing nn_mha vs composite_mha
    for config in tqdm(generate_experiment_configs()):
        results.append(Experiment(config, run_single_experiment(config)))

    print_results(results)


if __name__ == "__main__":
    main()